www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Fault Characterization Through FPGAs Undervolting

Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman

28th Field Programmable Logic & Applications (FPL) Conference, 27-Aug-2018, Dublin, Ireland.

Center Centro Nacional de Supercomputacional

Barcelona

Supercomputing

Underscaling the supply voltage *below the nominal level* :

- Power/Energy Efficiency: Reduces quadratic ally dynamic and linearly static power.
- Reliability: Increases the circuit delay and in turn, causes timing faults.

Aggressive Undervolting is not DVFS!

Motivation

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Contribution of FPGAs in large data centers is growing, expected to be in <u>30%</u> of datacenter servers by 2020 (Top500 news).

Experimental Methodology

Barcelona Supercomputing Center

- A Detailed study on <u>FPGA BRAMs</u>, which are a set of bitcells in the row-column format.
- **B** Experimental Methodology:
 - toell HW: Transfer content of BRAMs to ^{The mathematic series} 1. the host.
 - 2. <u>SW</u>: Analyze data, and adjust voltage of BRAMs.

Floorplan of VC707

Operating frequency is set to the maximum, i.e., ~500mhz.

Overall Behavior- Power & Reliability

Barcelona Supercomputing Center Centro Nacional de Supercomputació

Fault Characterization at **CRITICAL** Region

Fault Variability between BRAMs

- BRAMs clustering using K-Mean clustering.
- Majority of BRAMs are low-vulnerable.
- ~36% of BRAMs never experience faults.
- Fully non-uniform fault distribution.

Barcelona

Center

BSC

Supercomputing

VC707

KC705 VCCBRAM= Vcrash

* Different scales in y-axis * *Pattern= 18'h3FFFF *

Environmental Temperature

- **Methodology:** Adjusting environmental temperature, monitoring on-board temperature via PMBus.
- Experimental Observation:
 - At higher temperatures, fault rate is significantly reduced.
 - The <u>rate of this reduction</u> is highly platform-dependent (VC707 > KC705).
- Inverse Temperature Dependency (ITD):
 - For nano-scale technologies, under ultra low-voltage operations, the circuit delay reduces at higher temperatures since supply voltage approaches the threshold voltage.

* y-axis: VCCBRAM (V), y-axis: fault rate (per 1Mbit) *

Summary & Future Works

Barcelona Supercomputing Center Centro Nacional de Supercomputació

Summary

- We <u>experimentally</u> showed how Xilinx FPGAs work under aggressive low-voltage operations.
- There is a <u>conservative voltage</u> <u>guardband</u> below the nominal level.
- BRAMs <u>power</u> is significantly reduced through Undervolting; however, <u>reliability</u> degrades below min safe voltage.
- We <u>characterized</u> the behavior of Undervolting faults at the critical region.

Future Works

- <u>Dynamic Vmin scaling</u>, adapted by frequency and temperature.
- More advanced designs, where other components such as <u>I/O</u>, <u>DDR</u>, <u>DSP</u> are undervolted.
- Efficient Fault Mitigation Techniques.
- <u>Profiling applications</u> such as Deep Neural Networks (DNNs), among others.
- Extending Undervolting for other commercial FPGAs such as <u>Intel/Altera.</u>

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thanks!

www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Contact: Behzad Salami behzad.salami@bsc.es

