
D3.2 “FIRST RELEASE OF THE TASK-BASED
RUNTIME”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline 31 July 2019

Dissemination Level Public

Nature Report

Author Miquel Pericàs (CHALMERS)

Contributors Konstantinos Parasyris (BSC), Mustafa Abduljabbar
(CHALMERS), Xavier Martorell (BSC), Leonardo
Bautista (BSC), Behzad Salami (BSC), Le Quoc Do
(TUD), Gunnar Billung-Meyer (CHR), Babis Chalios
(BSC)

Reviewers Adrian Cristal (BSC), Madhavan Manivannan
(CHALMERS)

The LEGaTO project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 780681.

D3.2 Version 1.0 1 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Ref. Ares(2019)5020862 - 31/07/2019

https://legato-project.eu/

Change Log

Version Description of Change

0.1 2019-06-30. Initial draft

0.2 2019-07-09. Fault Tolerance

0.3 2019-07-16. New section layout

0.4 2019-07-17. OmpSs@FPGA and OmpSs@Linter

0.5 2019-07-18. XiTAO software topologies and Executive Summary

0.6 2019-07-19. Introduction and Conclusions

0.7 2019-07-19. XiTAO scheduler section and XiTAO release

0.8 2019-07-19. Secure Checkpointing

0.9 2019-07-23. OpenStack and RedFish

0.91 2019-07-23. OmpSs@Cluster

0.92 2019-07-24. Draft for internal review

1.0 2019-07-31. Address comments from internal review

D3.2 Version 1.0 2 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Index

1 Executive Summary . 9

2 Introduction . 9

3 Middleware and backend drivers . 10
3.1 Red�sh API . 12

3.1.1 Data Model . 12
3.1.2 Node Composition Process . 14

3.2 OpenStack . 19
3.2.1 Ironic . 19
3.2.2 Cyborg . 19
3.2.3 Valence . 20

3.3 Backend Drivers . 23

4 Energy-e�cient task-based runtime . 23
4.1 XiTAO . 23

4.1.1 XiTAO software topologies . 23
4.1.2 The XiTAO heterogeneous scheduler 25
4.1.3 The XiTAO Public Release . 31

4.2 OmpSs . 32
4.2.1 OmpSs@FPGA . 32
4.2.2 OmpSs@Cluster . 48

5 Runtime support for Fault Tolerance and Security 52
5.1 GPU Checkpointing . 52

5.1.1 FTI implementation . 52
5.1.2 GPU Support for FTI . 53
5.1.3 FTI Analysis and Optimization 55
5.1.4 Evaluation . 57
5.1.5 Di�erential Checkpoint Support for GPU data 60
5.1.6 Incremental Checkpoint Support for GPU data 60

5.2 FPGA Unvervolting . 61
5.2.1 Introduction . 62
5.2.2 Experimental Methodology . 62
5.2.3 E�ect of Process Variation and Environmental Temperature 62
5.2.4 Energy-resilience Trade-o� on FPGA-based NN 64
5.2.5 Fault Mitigation Techniques 68

5.3 Secure Checkpointing . 70

6 Runtime Support for Application Development 71
6.1 OmpSs@Linter as a debug tool . 72

D3.2 Version 1.0 3 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

7 Conclusion . 73

8 References . 74

A IPMItool command example . 77

D3.2 Version 1.0 4 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

List of Figures

3.1 LEGaTOmiddleware stack for resourcemanagement and node com-
position . 11

3.2 Red�sh data model of the RECS_Master 13
3.3 Node composition process with the Red�sh API 14
3.4 HTTP request to allocate a composed node 15
3.5 HTTP request to reject a composed node 16
3.6 HTTP request to assemble a composed node (Connect x86 to �rst

FPGA and PCIe SSD to switch port) . 16
3.7 HTTP request to assemble a composed node (Connect FPGAs to

PCIe switch ports) . 17
3.8 HTTP request to assemble a composed node (Connect x86 to �rst

FPGA and both FPGAs with each other) 18
3.9 HTTP request to recon�gure a composed node 18
3.10 HTTP request to delete a composed node 19
3.11 RECS|Box bare-metal node in OpenStack Ironic GUI 20
3.12 HTTP request to program an FPGA with OpenStack Cyborg 20
3.13 HTTP request to create a POD manager with OpenStack Valence . . 21
3.14 HTTP request to allocate a composed node with OpenStack Valence 22
3.15 HTTP request to assemble a composed nodewith OpenStack Valence 22

4.1 Virtual topology mapping of Jacobi2D and Copy2D kernels 24
4.2 Adding an extra layer for NUMA-aware data placment 25
4.3 Example of a PTT with four cores. Valid resource widths are 1, 2, or 4. 26
4.4 Architecture of VGG-16: CONVX-Y represents X-D �lter and Y Chan-

nels of convolutional layer respectively 28
4.5 The performance impact over parallelism and number of TAOs and

the performance comparison between performance-based sched-
uler and homogeneous scheduler. 29

4.6 The e�ect of interference on PTT scheduling of critical tasks. . . . 30
4.7 Performance of CPU GEMM on XiTAO VGG-16 with variable number

of threads . 31
4.8 Percentage of TAOs scheduled with corresponding TAO width by PTT 32
4.9 First version of FPGA Matrix Multiply code 35
4.10 OmpSs compilation env. with FPGA support 35
4.11 High-level representation of the Nanos++ environment 36
4.12 Implements version of SMP Matrix Multiply code (no castings done) 37
4.13 Cholesky application with its four composing kernels 40
4.14 N-body main loop and blocking version of the calculate_forces . . 41
4.15 Time of N-Body execution with di�erent blocking. 43
4.16 FPGA Blocking version of the calculate_forces function of N-body 44
4.17 GFLOPs for Matrix Multiply with di�erent FPGA accelerators 45

D3.2 Version 1.0 5 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

4.18 Trace of FPGA execution with 3 128 Matrix Multiply accelerators . . 46
4.19 Time of Cholesky execution with di�erent task mappings 47
4.20 Task Execution Work�ow in Nanos6 49
4.21 Using the Execution Work�ow to execute an OmpSs@Cluster Task 51

5.1 Source code using FTI. FTI API calls and variables are marked as
red. On the left side we demonstrate the original FTI and on the
extended one. 53

5.2 The device tomemory transfer protocol. Ideally, all the datamove-
ments are overlapped. The user-application is delayed until all
data is copied to the I/O layer. 54

5.3 Execution time breakdownof checkpoints before optimization and
after optimization. 55

5.4 MD5 computation of GPU and CPU data 56
5.5 Execution Time spent to checkpoint di�erent applications 58
5.6 Fault Variation Maps (FVM) for two identical samples of KC705 at

Vcrash. Totally di�erent fault rates and fault locations (FVM) are
experimentally observed. 63

5.7 The correlation among on-board temperature, supply voltage, ar-
chitectural technology, and fault rate for FPGA BRAMs. x-axis rep-
resents VCCBRAM from Vmin to Vcrash and y-axis shows the fault
rate per 1Mbit. 65

5.8 The overall energy/accuracy trade-o� of the FPGA-based NN. Vnom:
The default voltage level. V1st−fault: The voltage level that the �rst
fault appears. Vmin: Below this voltage level there is NN accuracy
loss. Vcrash: Below this voltage level FPGA crashes. 66

5.9 Resilience behavior of the accelerator on four studied FPGAs (x-
axis: VCCBRAM (V), y-axisL: NN inference error rate (percentage), y-
axisR: BRAMs fault rate (per 1Mb), shown forMasked [V1st−fault, Vmin)
and Critical [Vmin, Vcrash) regions. + V1st−fault, Vmin, and Vcrash are
highlighted with di�erent colors. + Among di�erent platforms,
slight variation of the voltage regions and the subsequent sig-
ni�cant impact on the fault rate and NN accuracy in the Critical
region can be seen. 67

5.10 Power saving of the accelerator at di�erent voltage regions, shown
for VC707 (similar for other platforms). 68

5.11 Non-uniform fault distribution among BRAMs for VC707 with 2030
BRAMs, classi�ed using the K-means clustering in terms of the
fault rate at Vcrash (similar for other platforms). 69

5.12 Di�erent types of undervolting faults, shown for VC707 (similar for
other platforms). 69

5.13 Fault mitigation in the accelerator, shown for VC707. 70

6.1 Logical �ow of the OmpSs@Linter tool. The Pin VM trace (bottom)
is compared with the actual dependencies observed by Nanos
during runtime (top right). High level debug information (top left)
is used to generate human readable feedback. 72

6.2 Report generated by OmpSs@linter when missing a data access
hint clause. 73

D3.2 Version 1.0 6 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

6.3 Report generated by OmpSs@linter when missing a taskwait. . . . 74

A.1 IPMItool command to list available baseboards and power supplies 77
A.2 IPMItool command to list available nodes on baseboard 6 77
A.3 IPMItool command to get sensors of node 3 on baseboard 6 77
A.4 IPMItool command to get power status of node 3 on baseboard 6 . 77
A.5 IPMItool command to turn on node 3 on baseboard 6 77

D3.2 Version 1.0 7 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

List of Tables

4.1 Summary of applications’ characteristics 39
4.2 Resources used by N-Body kernels in XCZU9EG-FFVC900 42
4.3 Resources used by Matrix Multiply kernels in XCZU9EG-FFVC900 . . 44
4.4 Resources used by Cholesky kernels in XCZU9EG-FFVC900 47
4.5 Number of tasks executed in di�erent hardware units 48

D3.2 Version 1.0 8 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1. Executive Summary
This report details the status of the LEGaTO toolchain backend as of M20. The
report is organized in three sections covering (1) the OpenStack middleware, (2)
the energy-e�cient runtime, implemented via its two main components Nanos
and XiTAO, and (3) the fault tolerance schemes for GPU (via checkpointing), FPGA
(for undervolting reliability), and CPU (ensuring secure checkpointing).

The �rst release of the task-based runtime supports static node composition via
both OpenStack and the RedFish API. At the runtime layer, the current release
now includes the �rst public release of the XiTAO runtime, featuring both per-
formance and energy-aware scheduling and virtual topologies for locality-aware
scheduling. The release also features support for executing OmpSs applications
on cluster hardware (OmpSs@Cluster), and improvements to OmpSs@FPGA tar-
geting novel FPGA hardware, support for scalar operands, and instrumentation
for performance analysis. In addition, a tool has been developed to debug the
correctness of OmpSs programs (OmpSs@Linter). Finally, this LEGaTO release
also features support for advanced fault tolerance in the form of high perfor-
mance GPU checkpointing, support for reliable and energy e�cient FPGA under-
volting, and support for secure checkpointing via the SCONE tool.

2. Introduction
Heterogeneous architectures composed of asymmetric cores, FPGAs and GPUs
are instrumental to reach the levels of energy e�ciency demanded by next
generation IoT, Edge and HPC applications. The LEGaTO project is building a
toolchain to map applications written in the OmpSs language onto two hetero-
geneous platforms provided by Christmann and Maxeler. This deliverable de-
scribes the �rst LEGaTO release of the runtime system that is being developed
to support LEGaTO applications at runtime. The application development and
compilation aspects are covered in the sibling deliverable D4.2.

The main goal of the runtime developed in LEGaTO is energy e�ciency. In or-
der to achieve the targeted improvement of 10× energy reduction, LEGaTO’s
runtime workpackage (WP3) is researching scheduling and locality-awareness
techniques, the o�oading of computations to FPGAs, and the undervolting of
FPGAs.

Themain task of the runtime is tomake e�cient use of the underlying hardware.
This requires a good understanding of the available hardware and its con�gura-
tion. The RECS hardware developed by Christmann can be statically con�gured
and dynamically queried by the runtime via the RedFish API and an OpenStack
layer. The Red�sh API is described in Section 3.1. The OpenStack layer is de-
scribed in Section 3.2. Work to target the platform from the runtime layer is
currently underway and described in Section 3.3.

In modern platforms, performance and energy-e�ciency are highly dependent
on datamovement. To this end, we are developing novel APIs to specify application-
level task locality in a platform-independent way. The XiTAO runtime supports

D3.2 Version 1.0 9 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

a mechanism called software topologies which allows to map tasks on a vir-
tual topology which is translated to hardware at runtime. The operation of this
scheme is described in Section 4.1.1.

Scheduling techniques are being researched mainly in the context of the ex-
perimental XiTAO runtime. XiTAO decouples task parallelism from the amount
of resources by specifying a resource container. Runtime-guided allocation of
resource containers is a major target of our research, enabling the user to tar-
get performance-aware or energy-aware schedules. Our research on XiTAO is
described in Section 4.1.2. We also describe the public release of XiTAO in Sec-
tion 4.1.3.

FPGAs are recently becoming popular in HPC and in the datacenter as a way to
accelerate applications while achieving high energy e�ciency. In LEGaTO we are
researching how to support FPGAs at runtime via the OmpSs@FPGA infrastruc-
ture which enables seamless o�oading of FPGA bitstreams to FPGA accelerators,
all integrated within the OmpSs compilation �ow and Nanos runtime. Our re-
search on OmpSs@FPGA is described in Section 4.2.1.

Scalability is another major goal of LEGaTO in order to support larger applica-
tions and systems. To achieve improved scalability we are researching how to
execute OmpSs applications on multiple nodes with distributed memory. This
approach, called OmpSs@Cluster has currently been released as part of OmpSs-
2. The technologies required to execute OmpSs applications on large-scale clus-
ters are described in Section 4.2.2.

One challenge associated with scalability is reliability. Executing an application
on a large collection of nodes decreases its Mean Time Before Failure (MTBF).
Checkpointing is a common technique to increase reliability by storing applica-
tion snapshots to long term storage (e.g. disk). Checkpointing has been exten-
sively researched in the context of CPUs. The LEGaTO project aims to extend this
support to heterogeneous architectures including FPGA and GPU. Section 5.1 de-
tails our current research on automatically checkpointing applications running
on GPUs using the FTI checkpointing library.

Further energy-e�ciency with FPGAs can be achieved by using undervolting.
This technique reduces the voltage of FPGA components to achieve amore energy-
e�cient operation mode. However, too aggressive undervolting can lead to er-
rors. How much to undervolt and how to correct errors are two goals of our
research on FPGA technology. Current results are described in Section 5.2.

Ensuring integrity and privacy is also an important goal of checkpointing. Cur-
rently LEGaTO is exploring how to generate secure checkpoints via the SCONE
toolchain. This research is described in Section 5.3.

Finally, we are also developing runtime components to support the program-
ming of OmpSs applications. In particular, we are currently developing a tool
called OmpSs@Linter whose goal is to detect potential bugs in the speci�ca-
tion of OmpSs task dependencies and missing synchronization between OmpSs
parent and child tasks. These developments are described in Section 6.1.

3. Middleware and backend drivers

D3.2 Version 1.0 10 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

The RECS|Box hardware, as described in the SD1 deliverable [29], is a modular
microserver system, which features the simultaneous use of di�erent hardware
architectures. All microservers and PCIe extensions are embedded into a high-
speed-low-latency communication infrastructure, which allows very performant
and e�cient communication between all computation resources. The RECS|Box
hardware also o�ers the possibility to build subsets of these resources and de-
�ne their physical communication infrastructure during runtime to match appli-
cations and algorithms computation requirements perfectly. This mechanism of
node composition is described in detail in D2.2 [3].

A suitable middleware layer is required to abstract out the complexity of these
various hardware management possibilities. This will also improve the user-
level experience. The software stack above the hardware infrastructure consists
of multiple components, which can be seen in �gure 3.1.

Figure 3.1. LEGaTO middleware stack for resource management and node composition

An embedded �rmware is running on management CPUs within the hardware,
managing, controlling and monitoring it on a low-level. The RECS_Master is the
central management software within the RECS|Box, interacting closely with the
�rmware and providing themanagement andmonitoring capabilities to the user
through di�erent interfaces. For regular manual administrative usage, a WebGUI
is provided that allows access to all user-changeable settings and all monitor-
ing and control functionality. In addition to that, the RECS_Master o�ers a Na-
gios Remote Plugin Executor (NRPE) interface for integration with monitoring
and alerting software as well as an IPMI interface. Furthermore, there is a self-
de�ned RESTful API, which allows retrieval of all measured sensor values and

D3.2 Version 1.0 11 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

basic control of the nodes. Finally, a Red�sh API is available for managing cer-
tain special functions like node composition.

While the �rmware is clearly part of WP2, the development of the RECS_Master
belongs to both workpackages, as it is on the one hand part of the internal man-
agement of the underlying hardware infrastructure but on the other hand, it pro-
vides middleware functionality to the user and upper software layers through
its APIs. In LEGaTO, the Red�sh API is extended to allow dynamic node compo-
sition and its development status is reported in section 3.1. As already noted
above, the mechanism of node composition is described in D2.2 [3].

The other main block of the LEGaTO middleware is OpenStack. This is an open-
source software platform for managing cloud computing with the idea of provid-
ing infrastructure as a service. In LEGaTO, OpenStack is used to manage hard-
ware resources and we extended it to support static node composition. The
development status is reported in section 3.2. Despite the original plan, to ex-
tend OpenStack even further to also handle dynamic node composition during
runtime, we decided to shift this functionality to the RECS_Master and pause the
development of OpenStack in the current status. With this, we will support full-
featured (re-)con�guration of the underlying hardware independently of Open-
Stack and thus not forcing every customer to use and maintain an OpenStack
infrastructure.

3.1. Red�sh API
The management and composition of resources is one main task of the LEGaTO
middleware layer. Therefore, it needs a comprehensive API that is capable of
both providing detailed information about the hardware system and allowing
operation calls for managing the available resources. This has to be provided by
the RECS_Master management software of the RECS|Box, which has all required
information at hand and the ability to control every part of the hardware system
at the lowest level.

As already noted in the SD1 [29], we use the Red�sh API of the RECS_Master for
this task. The Red�sh Scalable Platforms Management API from the Distributed
Management Task Force, Inc (DMTF) [7] is designed to perform out-of-band man-
agement of multiple systems at once. It describes a RESTful interface on top of a
data model [8], which is capable of expressing the relationships between com-
ponents in modern systems. The payloads of HTTP requests to and responses
from an implementation of a Red�sh API are expressed in JSON [10] following
OData [21] JSON conventions and can therefore easily be interpreted by clients.
The standard is designed to be extensible and in the following, we describe the
extended Red�sh API of the RECS_Master, which matches the characteristics of
the RECS|Box hardware and allows dynamic node composition. The comprehen-
sive documentation of the Red�sh API is accessible online [4].

3.1.1. Data Model

Figure 3.2 shows the adapted data model of the Red�sh API, which de�nes mul-
tiple types of resources, that are related to each other. In addition to those
relations, these resources contain information about their properties and capa-
bilities.

D3.2 Version 1.0 12 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 3.2. Red�sh data model of the RECS_Master

A Chassis represents a physical RECS|Box enclosure. It holds references to the
Baseboards it includes physically, which can host multiple ComputerSystems.
Those are physical microservers with one or more Processors on it, which can be
of the type CPU, FPGA or GPU and are providing additional information like their
instruction set and number of cores. Each microserver has one or more Ether-
netInterfaces and can have an HSLLInterface. The latter represents the physical
endpoint of the microserver where it connects to the high-speed-low-latency
communication infrastructure. Those interfaces play an important role in the
node composition process, described in D2.2 [3]. Like a microserver, a PCIeDe-
vice also references to the Baseboard, it is attached to and has an HSLLInterface.
In addition to that, such a PCIe extension card can provide a set of PCIeFunc-
tions, which can be utilized by directly connected ComputerSystems. There are
two types of Switches de�ned in this model. An Ethernet switch is a logical unit
representing the physical 10 Gb/s Ethernet switch fabric within a Chassis. It pro-
vides Ports, the ComputerSystems can connect to with their EthernetInterfaces,
optionally using VLANs, which translate to VLanNetworkInterfaces in this model.
The other Switch type represents a PCIe switch fabric. Similarly to its Ethernet
counterpart, it provides Ports. Analogue to the ComputerSystems and PCIeDe-
vices, each PCIe Port has an HSLLInterface as an endpoint to connect to the
high-speed-low-latency communication infrastructure. Additionally, it can have
a set of PCIeFunctions, which can be utilized by computing resources connected
to that Port. This mechanism is also a main part of node composition.

All the aforementioned resources represent a physical component of the RECS|Box
microserver system. With node composition, it is possible to group computing
resources together on a logical level and interconnect them by using the high-
speed-low-latency communication infrastructure. A ComposedNode, which re-
sults from a node composition process, can comprise multiple and heteroge-
neous resources. Those can be ComputerSystems, PCIeDevices, Ports (only PCIe)
and other already de�ned ComposedNodes. The way these resources are in-
terconnected, is determined by an HSLLConnectionSet, which contains a set of
HSLLConnections. Such a connection de�nes two HSLLInterfaces of resources

D3.2 Version 1.0 13 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

contained in the ComposedNode as endpoints and the number of physical lanes
they are connected to each other. In addition to that, if one of the endpoints of
an HSLLConnection is a Port, the connection can also specify a set of PCIeFunc-
tions this Port will o�er to the resource at the other endpoint of the connec-
tion. With an HSLLConnectionSet, it is possible to build a communication topol-
ogy among the resources in a ComposedNode and assign virtual PCIe functions,
which can be used by resources connected to the respective Ports. It is also pos-
sible to de�ne more than one HSLLConnectionSet. Only one set can be active at
a time, but it can be changed at any time within the lifetime of a ComposedNode.
This feature enables the dynamic recon�guration of the high-speed-low-latency
communication infrastructure and the assignment virtual PCIe functions of at
runtime.

3.1.2. Node Composition Process

The underlyingmechanics of node composition are explained in detail in D2.2 [3].
For the sake of better comprehensibility, it is recommended to read that before
continuing with this section. Here, we focus on the process of utilizing the Red-
�sh API. All steps of this process are explained by means of a small, but com-
prehensive arti�cial example. The composed node in this example will consist
of a microserver with an x86 processor, two FPGAs, an SSD storage in form of a
PCIe extension card and ports of a PCIe switch.

The process of node composition through the Red�sh API is loosely based on
the process described by Intel’s Pod Manager API speci�cation [15] and is done
in multiple steps. Figure 3.3 depicts this process as a state diagram.

Figure 3.3. Node composition process with the Red�sh API

As the �rst step, the user provides a set of requirements describing the node
he wants to compose and orders the RECS_Master to allocate corresponding
resources. These requirements can either be concrete hardware entities such
as microservers or value sets specifying the desired properties of the composed
node such as processor architecture, cores or communication capabilities. For
this step, �gure 3.4 shows an example HTTP POST request to the corresponding
action URL of the Red�sh API.

In the example, requirements for three microservers are de�ned in the Systems
array of the JSON encoded HTTP POST body. The �rst has to have an x86 CPU with
a minimum of four cores while the other two should be FPGAs without further

D3.2 Version 1.0 14 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

POST http://recs.box/redfish/v1/ComposedNodes/Actions/
ComposedNodeCollection.Allocate

Content-Type: application/json
{

"Name": "ExampleNode",
"Description": "Node showing composition features",
"Systems": [{

"Processors": [{
"ProcessorType": "CPU",
"ProcessorArchitecture": "x86",
"TotalCores": 4

}]},{
"Processors": [{

"ProcessorType": "FPGA"
}]},{
"Processors": [{

"ProcessorType": "FPGA"
}]}

}],
"Devices": [{

"PCIeFunctions": [{
"FunctionType": "Virtual",
"DeviceClass": "MassStorageController",
"DeviceId": "0xa820",
"VendorId": "0x144d"

}]
}],
"Ports": [{

"SystemIndex": 1
},{

"SystemIndex": 2
},{

"DeviceIndex": 0
}]

}

Figure 3.4. HTTP request to allocate a composed node

constraints. Furthermore, a PCIe device is speci�ed in the Devices array. It is
required to have at least one virtual PCIe function with the stated device class,
vendor ID and device ID. Finally, three PCIe ports are requested for the composed
node, which are determined by the index within the corresponding arrays in the
POST body. Here, the ports of the two FPGAs and the PCIe device are demanded.

The RECS Master then calculates a best match based on these requirements
and reserves the resources by creating a composed node entity out of them. If
no error occurred, a new composed node is created and put from the transfer
state Allocating in the state Allocated. The URL location of the composed node,
proposed by the RECS_Master, is returned in the response header location. It
can then be reviewed by the requesting user, who can either accept the o�ered
composition by ordering the RECS_Master to assemble it or reject it and provide
adjusted requirements. For rejection, an HTTP POST with an empty body to the
appropriate action URL is necessary (see �gure 3.5).

D3.2 Version 1.0 15 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

POST http://recs.box/redfish/v1/ComposedNodes/CN_0/Actions/ComposedNode
.Reject

Content-Type: application/json
{}

Figure 3.5. HTTP request to reject a composed node

The second step is then the assembling of the composed node. Here, the user
has to de�ne how the allocated resources are connected to each other and how
virtual PCIe functions will be assigned, if there are any. Figures 3.6, 3.7 and 3.8
show an example HTTP POST request to assemble the allocated composed node.

POST http://recs.box/redfish/v1/ComposedNodes/CN_0/Actions/ComposedNode
.Assemble

Content-Type: application/json
{

"ConnectionSets": [{
"Description": "FPGAs share the SSD and work independently",
"Name": "fpgas_ssd",
"Connections": [{

"EndpointA": {
"@odata.id": "/redfish/v1/Systems/RCU_167739053240_BB_1_0/

HSLLInterface"
},
"EndpointB": {

"@odata.id": "/redfish/v1/Systems/RCU_167739053240_BB_1_1/
HSLLInterface"

},
"Width": 2

},{
"EndpointA": {

"@odata.id": "/redfish/v1/PCIeDevices/
RCU_167739053240_BB_1_Dev_0/HSLLInterface"

},
"EndpointB": {

"@odata.id": "/redfish/v1/Switches/RCU_167739053240_SWMGR_PCI/
Ports/RCU_167739053240_SWMGR_PCI_P_1-8/HSLLInterface"

},
"Width": 8

},

Figure 3.6. HTTP request to assemble a composed node (Connect x86 to �rst FPGA and
PCIe SSD to switch port)

Two con�gurations are speci�ed in the JSON array ConnectionSets of the POST
body. Both are given an explanatory description and a name for later reference.
Each connection set has an array of connections that are building the set. A con-
nection is de�ned by two endpoints and a width, which speci�es the number of
lanes connecting them. The �rst connection set is named "fpgas_ssd" and com-
prises four connections. The x86 microserver is connected to the �rst FPGA with
two lanes and the PCIe SSD is connected to its corresponding port on the PCIe
switch with eight lanes. With this, the switch has access to the virtual functions
of the PCIe device and is able to assign them to other ports. (see �gure 3.6)

D3.2 Version 1.0 16 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

{
"EndpointA": {

"@odata.id": "/redfish/v1/Systems/RCU_167739053240_BB_1_1/
HSLLInterface"

},
"EndpointB": {

"@odata.id": "/redfish/v1/Switches/RCU_167739053240_SWMGR_PCI/
Ports/RCU_167739053240_SWMGR_PCI_P_1-1/HSLLInterface"

},
"Width": 4,
"PCIeFunctions": [{

"FunctionType": "Virtual",
"DeviceClass": "MassStorageController",
"DeviceId": "0xa820",
"VendorId": "0x144d"

}]
},{

"EndpointA": {
"@odata.id": "/redfish/v1/Systems/RCU_167739053240_BB_1_2/

HSLLInterface"
},
"EndpointB": {

"@odata.id": "/redfish/v1/Switches/RCU_167739053240_SWMGR_PCI/
Ports/RCU_167739053240_SWMGR_PCI_P_1-1/HSLLInterface"

},
"Width": 4,
"PCIeFunctions": [{

"FunctionType": "Virtual",
"DeviceClass": "MassStorageController",
"DeviceId": "0xa820",
"VendorId": "0x144d"

}]
}]

},

Figure 3.7. HTTP request to assemble a composed node (Connect FPGAs to PCIe switch
ports)

Both FPGAs are connected to their respective ports on the PCIe switch with four
lanes each. If a port is one of the endpoints of a connection, it can addition-
ally specify a set of PCIe functions that should be assigned to the port by the
switch. Of course, the switch has to have access to those functions. Otherwise,
the assembling will fail. The connections of both FPGAs to their switch ports
are speci�ng, that the latter ones shall have such PCIe functions. Those are the
virtual PCIe storage functions that are provided by the PCIe SSD connected to
the switch (see �gure 3.7).

Another connection set with the name "fpga_fpga" and two connections is de-
�ned in the JSON body (see �gure 3.8). Similarly to the �rst connection set, the
�rst connection links the x86 microserver with two lanes to the �rst FPGA. The
second connection links both FPGAs together with six lanes. The set with the
name "fpgas_ssd" is selected as �rst connection set, which will be activated di-
rectly during the assembling process. When this step has successfully ended,

D3.2 Version 1.0 17 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

{
"Description": "FPGAs interconnected, SSD disconnected",
"Name": "fpga_fpga",
"Connections": [{

"EndpointA": {
"@odata.id": "/redfish/v1/Systems/RCU_167739053240_BB_1_0/

HSLLInterface"
},
"EndpointB": {

"@odata.id": "/redfish/v1/Systems/RCU_167739053240_BB_1_1/
HSLLInterface"

},
"Width": 2

},{
"EndpointA": {

"@odata.id": "/redfish/v1/Systems/RCU_167739053240_BB_1_1/
HSLLInterface"

},
"EndpointB": {

"@odata.id": "/redfish/v1/Systems/RCU_167739053240_BB_1_2/
HSLLInterface"

},
"Width": 6

}]
}],
"ActiveConnectionSet": "fpgas_ssd"

}

Figure 3.8. HTTP request to assemble a composed node (Connect x86 to �rst FPGA and
both FPGAs with each other)

the user is returned the URL location of the assembled and ready to use com-
posed node. The speci�ed topology is now active, giving both FPGAs shared
access to the PCIe SSD while the �rst FPGA is additionally connected to the x86
microserver. The composed node is in the state Assembled.

PATCH http://recs.box/redfish/v1/ComposedNodes/CN_0
Content-Type: application/json
{

"ActiveConnectionSet": "fpga_fpga"
}

Figure 3.9. HTTP request to recon�gure a composed node

For dynamically switching to the second con�guration during runtime, a HTTP
PATCH request to the URL of the composed node is necessary. It changes the
active connection set by setting ActiveConnectionSet to "fpga_fpga". The high-
speed-low-latency communication infrastructure is then immediately recon�g-
ured, discarding all con�gurations of the �rst connection set except the con-
nection between the �rst FPGA and the x86 microserver and establishing a new
connection between the two FPGAs with six lanes. The example of the HTTP
PATCH request is shown in �gure 3.9.

D3.2 Version 1.0 18 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DELETE http://recs.box/redfish/v1/ComposedNodes/CN_0

Figure 3.10. HTTP request to delete a composed node

Finally, a composed node can be destroyed to release all reserved resources
and reset all con�gured connections. This is done by sending an HTTP DELETE
request to the URL of the composed node (see �gure 3.10).

3.2. OpenStack
OpenStack has a modular architecture and clearly separates tasks to di�erent
components. Those used in LEGaTO were already brie�y introduced in the SD1
deliverable [29]. Here we focus on the three main components that are respon-
sible for node provisioning and composition.

3.2.1. Ironic

With the Ironic component, OpenStack is enabled to provision bare-metal x86
and ARM servers in contrast to the quite common handling of virtual machines
with the standard component Nova. Using the hardware directly instead of ap-
plying an additional resource-consuming virtualization layer is a quite apparent
decision for the RECS|Box, as this platform mainly features microservers with
limited resources.

Ironic comes with a TFPT server to provide images to bare-metal nodes and for
powermanagement it interacts with the virtual IPMI interface of the RECS_Master,
which was developed in the M2DC project. Virtual in this case means that there
is no dedicated BMC or IPMB, but the RECS Master implements the necessary
parts of the IPMI speci�cation in software and then maps this to its internal
data model that is also used for all other provided interfaces. As standard IPMI
was meant to work with just one server, the "double bridging" feature was used
to make selection of the node to be managed possible. There is an example in
the Annex A explaining how to discover the system, reading sensors and turning
on a node with IPMItool. Figure 3.11 shows a screenshot of a bare-metal node
in the Ironic GUI of the OpenStack installation (Rocky release) associated with a
microserver within the RECS|Box.

3.2.2. Cyborg

Cyborg is used for acceleratormanagement andwas extended in theM2DC project
to handle FPGAs in the context of the RECS|Box. It interacts with the Red�sh API
of the RECS_Master to obtain the list of available FPGA nodes and their MAC
addresses. Cyborg connects to the FPGA to read the device data and add it to
its database. Bitstreams, that can be used to con�gure FPGAs are stored in the
OpenStack Glance service to be accessed in the deployment process. Figure 3.12
shows an example HTTP request to Cyborgs REST API to actually con�gure an
FPGA with a bitstream. In addition to the obligatory <TOKEN> for authentication,
the <FPGA_ID> of the accelerator within the Cyborg database and the <IMAGE_ID>
of the bitstream within Glance are used in this request.

D3.2 Version 1.0 19 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 3.11. RECS|Box bare-metal node in OpenStack Ironic GUI

PATCH http://cyborg-api:6666/v1/accelerators/deployables/<FPGA_ID>/
program

Content-Type: application/json
Accept: application/json
X-Auth-Token: <TOKEN>
[{

"op": "replace",
"path": "/program",
"value": [{

"image_uuid": "<IMAGE_ID>"
}]

}]

Figure 3.12. HTTP request to program an FPGA with OpenStack Cyborg

3.2.3. Valence

Valence is the OpenStack component for lifecycle management of pooled bare-
metal hardware infrastructure. It is intended to handle disaggregated comput-
ing, storage and networking resources and compose them together to meet var-
ious needs in data center and cloud environments. The main initiator of this
component is Intel® with its Rack Scale Design [14] approach. Valence was ex-
tended, �rst in M2DC and then in LEGaTO, to also match the RECS|Box architec-

D3.2 Version 1.0 20 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

ture. For that, it utilizes the Red�sh API of the RECS_Master, which is a perfect
match, because the Red�sh standard is Valence’s default management protocol
to communicate with hardware.

As noted in the introduction of this chapter, the Valence development is now
at the state of supporting the static part of the node composition process, not
allowing dynamic adaption of the high-speed-low-latency infrastructure at run-
time. In favour of implementing all static and dynamic node composition fea-
tures directly in the RECS_Master, the OpenStack development will be paused.
Here, the process of static node composition with Valence is described. In main
parts, it follows the process described in the Red�sh API section 3.1, as Valence
is tightly interacting with this interface.

The �rst step in Valence is the creation of a PODmanager. In Rack Scale Design, a
POD originallymanages a collection of physical racks. This will be the entry point
to the RECS|Box platform. See the example HTTP POST request in �gure 3.13. In
the request, the base URL of the Red�sh API and authentication data are given.
The driver "red�shv1" is selected to interact with the RECS_Master trough the
Red�sh API.

POST http://valence-api:8181/v1/pod_managers
Content-Type: application/json
Accept: application/json
{

"url": "http://recs.box/redfish/v1",
"name": "recs_box",
"driver": "redfishv1",
"authentication": [{

"type": "basic",
"auth_items": {

"username": "admin",
"password": "admin"

}
}]

}

Figure 3.13. HTTP request to create a POD manager with OpenStack Valence

The actual node composition starts, analogue to the Red�sh API process, with
the resource allocation, where requirements for all nodes have to be speci�ed.
Figure 3.14 shows a HTTP POST request for this �rst step.

In the example, a simple node consisting of two resources will be composed
using the ID of the created POD manager <PODM_ID>. The requirements specify
that one system has to have an x86 CPU and the other should be an FPGA. Addi-
tionally, both resources shall reside on a speci�c baseboard location, given by
its ID within the Red�sh API. The HTTP response contains the IDs of the proposed
resources within the Red�sh API and some additional information regarding the
systems.

The next step in the node composition process is the assembling of the allo-
cated resources by de�ning their high-speed-low-latency connections among
each other. This is similar to the allocation step in the Red�sh API process,

D3.2 Version 1.0 21 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

POST http://valence-api:8181/v1/nodes
Content-Type: application/json
Accept: application/json
{

"allocate": "yes",
"podm_id": "<PODM_ID>",
"name": "Example Composed Node",
"properties": {

"Sytems": [{
"Location": "RCU_2602448565353684_BB_1",
"Processors": {

"ProcessorType": "CPU",
"ProcessorArchitecture": "x86"

}
},{

"Location": "RCU_2602448565353684_BB_1",
"Processors": {

"ProcessorType": "FPGA"
}

}]
}

}

Figure 3.14. HTTP request to allocate a composed node with OpenStack Valence

except that multiple connection sets and dynamic assignment of virtual PCIe
functions are not allowed, as only static node composition is supported in this
version of Valence. Figure 3.15 shows the example HTTP POST request for this
assembling step.

POST http://valence-api:8181/v1/nodes
Content-Type: application/json
Accept: application/json
{

"id": "CN_0",
"assemble": "yes",
"podm_id": "<PODM_ID>",
"name": "Example Composed Node",
"properties": {

"connection": [{
"components": "RCU_2602448565353684_BB_1_0,

RCU_2602448565353684_BB_1_1",
"width": "8"

}]
}

}

Figure 3.15. HTTP request to assemble a composed node with OpenStack Valence

Beside the obligatory POD manager ID, name and ID of the composed node are
given in the assemble request. One connection is speci�ed in this example,
linking the CPU and the FPGA systems with eight lanes of the high-speed-low-
latency communication infrastructure. Multiple connections can be de�ned in
the array "connection", if more resources are available in the composed node.

D3.2 Version 1.0 22 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

In the HTTP response, the name and ID of the now assembled composed node
are returned together with the URL to the node in the Red�sh API and its ID
in the Valence database. This concludes the node composition with OpenStack
Valence.

3.3. Backend Drivers
In order to drive the platform from the runtime layer we are developing the nec-
essary runtime system support for GPUs and FPGAs. For GPUs, CUDA and OpenCL
libraries from vendors provide the necessary low level services for Nanos-6. On
the Xilinx FPGAs, we provide the xdma and xtasks libraries that work on top of
the vendor driver in Linux. We currently interoperate with the Xilinx and Alpha-
Data drivers on the various Xilinx integrated and discrete FPGAs that we support
(Zynq 7000, Zynq U+, and Virtex-7).

4. Energy-e�cient task-based runtime
This chapter describes our e�orts to develop runtime technologies targeting
scalability and high energy e�ciency.

4.1. XiTAO
This section describes the current status of the XiTAO runtime infrastructure.
First we describe the concept of software topologies and its implementation in
XiTAO. Next we describe XiTAO’s online performance monitor and how it is used
to guide scheduling decisions. Finally, we describe the �rst public release of the
XiTAO runtime.

4.1.1. XiTAO software topologies

Software topologies is a mechanism implemented in XiTAO to achieve strict
locality-aware scheduling of tasks in a portable manner. Since the execution
model of XiTAO DAGs is compile-once run-anywhere, any information for locality
aware scheduling needs to be generic and interpretable at runtime. At the task
level, XiTAO implements a concept called "virtual topologies" which is converted
at runtime into actual thread mappings to enforce locality aware scheduling.
This mapping is strict in the sense that tasks that have a locality speci�cation
are no longer subject to load balancing. It is hence important to only use the
locality feature when strictly necessary to avoid excessive communication. We
will explore more relaxed schemes in the future.

XiTAO’s virtual topologies consist of regular N-dimensional cartesian topolo-
gies. Figure 4.1 shows an example with virtual mappings of the jacobi2D and
copy2D kernels as implemented in the Heat benchmark that is part of the sam-
ple benchmarks available in the public XiTAO git repository. In this example,
each task in the DAG of task assembly objects (TAO-DAG) is given an address
(called a software topology address) in a virtual topology consisting of a one-
dimensional topology (a line between 0 and 1). Generically, the idea is that by
measuring the virtual distance between two XiTAO tasks, the runtime obtains
approximate information on the communication relationship between the two
tasks. If two tasks have the same address, this is understood by the runtime as

D3.2 Version 1.0 23 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

meaning the highest amount of data reuse between the two tasks. As a conse-
quence, the XiTAO runtime will attempt to schedule the two tasks on the same
set of cores. This then optimistically results in data reuse via the caches of the
cores. In the current state of XiTAO, we have implemented one-dimensional vir-
tual topologies. As tested with the Heat di�usion simulation benchmark, this
scheme can have a very positive impact on performance by avoiding unneces-
sary communication.

Figure 4.1. Virtual topology mapping of Jacobi2D and Copy2D kernels

XiTAO’s virtual topologies can also be used to support NUMA-aware data place-
ment. This is achieved by introducing an extra layer of tasks that takes care of
data placement. Using virtual topologies, this layer of tasks can be scheduled to
the same cores and NUMA nodes as the dependent tasks. This, combined with
the default �rst touch allocation implemented in the Linux kernel1, achieves
locality-aware data placement. The overall idea is shown in Figure 4.2. The �rst
touch policy speci�es that the physical memory page is allocated on the node
that �rst writes to the data. This is important since it means that data allocation
(e.g. via malloc()) is not enough to ensure correct data placement, but in fact
data placement happens when data is written to for the �rst time. Hence, as
shown in Figure 4.2, initializing the data will take care of the proper data place-
ment.

1https://queue.acm.org/detail.cfm?id=2513149

D3.2 Version 1.0 24 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://queue.acm.org/detail.cfm?id=2513149

i

i+1

local memories

2D stencil
TAO-DAG

(2,1) (2,2) (2,3) (2,4)

(2,1) (2,2) (2,3) (2,4)

iteration

placement init() init() init() init()

allocation alloc() alloc() alloc() alloc()

NUMA node 0 NUMA node 1

Figure 4.2. Adding an extra layer for NUMA-aware data placment

4.1.2. The XiTAO heterogeneous scheduler

With the emergence of heterogeneous hardware, it becomes important to adapt
the runtime scheduling to the platform’s heterogeneity. Systems may include
both static and dynamic sources of heterogeneity. Static heterogeneity sources
are those that are �xed at design time, for example, single-ISA cores with di�er-
ent levels of power-e�ciency (e.g. big.LITTLE), or asymmetric ISA systems con-
sisting of processor cores and accelerators (e.g. CPU/GPU/FPGA platforms). Dy-
namic sources of heterogeneity are those that arise from runtime conditions.
For example, usage of Dynamic Voltage-Frequency Scaling (DVFS) [17] to tune
the performance and e�ciency of cores is an example of dynamic heterogene-
ity. Another example of is the occurrence of external applications competing for
the same set of resources.

Classical schedulers that target single-threaded tasks usually perform a greedy
schedule in an attempt to maximize resource usage and achieve good perfor-
mance. A downside of this approach is that it leads to oversubscription of re-
sources as all threads/cores attempt to bring their working sets into the shared
cache by using the shared access to main memory. One way to address this
limitation is to convert the classical 1-task to 1-core scheduling problem into a
hierarchical problem in which a global level schedules M-task-groups onto N-
core-places, and a local level schedules the M-tasks onto the assigned N-cores.
This scheme, known as Elastic Places, targets interference-free scheduling and
allows to retain the greedy property in the global scheduler [22]. The XiTAO li-
brary2 is an embodiment of this concept. In XiTAO, parallel tasks are scheduled
into resource partitions called elastic places. The method has been shown to
perform e�ciently on homogeneous manycore and NUMA systems. To achieve
higher energy e�ciency, however, it is important to make XiTAO aware of het-
erogeneous platforms.

In LEGaTO, we have explored and proposed schemes to automatically deter-
mine resource partitions (i.e. N-core places) at runtime. Furthermore, we have
researched how this knowledge can be used to leverage modern single-ISA plat-
forms with both static and dynamic sources of heterogeneity. To this end, we

2https://sites.google.com/site/mpericas/xitao

D3.2 Version 1.0 25 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://sites.google.com/site/mpericas/xitao

0Core

Width =1

Width =2

Width =4

1 2 3

Core 0

Core 1

Core 2

Core 3

Width = 1 Width = 2 Width = 4

Figure 4.3. Example of a PTT with four cores. Valid resource widths are 1, 2, or 4.

have developed a scheduler inspired by Criticality-Aware Task Scheduling (CATS) [5]
and extended it with a performance trace table (PTT) that monitors the system’s
performance characteristics at runtime. Despite its simplicity, the PTT provides
enough information to implement both heterogeneity-aware and interference-
free schedules at runtime at minimum cost.

4.1.2.1. Performance Trace Table

To be able to intelligently distribute tasks to the corresponding core type and to
dynamically a�ect the scheduling decisions based on the available resources,
we have introduced a runtime task performance tracer and a table (PTT) to
record and predict future task execution times. The table provides an online
model of the execution time for each valid combination of leader core and re-
source width, (core id, resource width). The leader is the core with the lowest
index in the assigned place (i.e. resource partition). The left part of Figure 4.3
shows all the scenarios of resource width when the total number of cores seen
by the runtime is four. In this case, the resource width can be 1, 2 and 4.

The PTT is implemented in the XiTAO runtime. It is organized as shown in the
right of Figure 4.3. The size of the table is core_number × resource_width_number .
The �elds of the table are initialized to 0, which models a zero execution time.
This ensures that all con�guration pairs will eventually be visited and trained at
runtime. Due to the decentralized implementation of the scheduler, the table
is organized to �t into cache lines such that each core only accesses one cache
line indexed with core number, hence avoiding false sharing. For each entry, the
execution time of the pair is temporarily stored. Then each entry is updated with
a weighted time of 1:4 (i.e. 80% old, 20% new). This combination has been found
experimentally to perform well. The performance trace table is updated always
by the leader core of a task. This simpli�es the implementation and reduces
cache migrations. This also means that every core can have a model value of
the task with width = 1 but only every fourth core will have a model value of the
task with width = 4. As shown in Figure 4.3, in the case of width=1 (purple �eld),
each core is the leader for its own partition. For the case width=2 (orange), the
leading core 0 (2) handles the resource partition containing cores 0 (2) and 1 (3).

This implementation of tracing execution history requires very little information:
only the number of cores and their distribution into core-clusters with shared
caches is required. The cores simply update the corresponding index, indepen-
dent of its resource type, thus creating a performance model. In other words, no
matter what core-types a platform has (big, little, etc.), the performance of these
cores will be re�ected by PTT values. This is bene�cial not only for portability

D3.2 Version 1.0 26 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

and potentially functional-heterogeneity, but also for temporally added hetero-
geneity such as DVFS caused by heat variations, or interference caused by other
tasks and/or uncontrollable system activities such as background processes or
interrupts.

4.1.2.2. Performance-based Scheduler

Based on the implementation of the performance trace table, we have devel-
oped a heterogeneous scheduler with the goal of optimizing performance. To
achieve this, we followed the basic strategy of CATS [5] and extended it with our
heterogeneity-agnostic methodology. This scheduler is named performance-
based scheduler. The main feature of the performance-based scheduler is its
ability to �nd the optimal cores and resource width by globally searching the
PTT.

If a task lies on the critical path we globally search the performance trace table
to �nd the optimal pair of core and resource width for such task. Global search
means that all the entries of the PTT of the particular TAO type are checked to
�nd the value that globally minimizes the product: exec_time × resource_width .
The goal of this operation is to �nd the pair of core and resource width that
minimizes the system’s occupation of resources, understood as the product of
resources and execution time. For tasks that do not lie on the critical path,
only the best width is selected according to the PTT, but the leader core is not
modi�ed. We also modi�ed work stealing so that only non-critical task can be
stolen. Critical tasks are ignored during work stealing.

4.1.2.3. Experimental Setup

We evaluated the PTT scheduler on two platforms. From the static heteroge-
neous family, we use a NVIDIA Jetson TX2 development board, featuring a dual-
core NVIDIA Denver 2 64-bit CPU and a quad-core ARM A57 Complex (each with
2 MB L2 cache). Both the Denver 2 and the A57 cores implement the ARMv8 64-
bit instruction set and are cache coherent. On the homogeneous side, an Intel
2650v3 (code-named "Haswell") based platform is used to evaluate the e�ect
of interference while scheduling Random DAGs, and to evaluate the behavior of
XiTAO when executing the VGG-16 Image Classi�cation network [27].

Random Directed Acyclic Graph

Kernels

We generate random DAGs to evaluate the properties of the PTT scheduler. The
random DAGs are based on a mix of di�erent kernel types. When selecting the
kernels, the priority is to achieve di�erent characteristics in terms of memory-
intensiveness (streaming), cache-intensiveness (i.e. data reuse) and compute-
intensiveness. The following three kernels are selected for this purpose.

Matrix Multiplication. Amatrix multiplication kernel is created for the compute-
intensive property. We implement a matrix multiplication that achieves paral-
lelism by ensuring that the writing of output data is done to separate cache lines
for each thread while still sharing the input data.

Sort. For the data reuse property, a quick sort and merge sort kernel combina-
tion is selected. This kernel �rst splits the input array into chunks and performs

D3.2 Version 1.0 27 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

CONV3-64
CONV3-64

CONV3-128
CONV3-128

FC-4096
FC-4096
FC-1000 GEMM

GEMM
GEMM

GEMM
GEMM

GEMM
GEMM

 TAO 0 TAO 1 TAO N.....
XiTAO

Figure 4.4. Architecture of VGG-16: CONVX-Y represents X-D �lter and Y Channels of con-
volutional layer respectively

in-place sorting with quick sort before carrying out two levels of merge sort,
e�ectively reusing the data within the kernel. This kernel has a maximum par-
allelism of four.

Copy. Finally, a copy kernel handling large inputs is implemented for the stream-
ing property. This kernel reads and writes large portions of data to memory, ef-
fectively creating a streaming behavior where the kernel accesses main memory
continuously. Each core copies a subset of the data.

For each kernel, we select the appropriate working set size corresponding to
the desired behavior. For the matrix multiplication kernel, we choose a 64 ×
64 matrix. For the sort kernel, we choose a 262KB input array, taking up a total
space of 524KB due to double bu�ering, e�ectively �tting the L2 caches of the
TX2 platform. Finally, the copy kernel uses a 16.8MB array, taking up a total space
of 33.6MB, which is much larger than the space of the L2 cache.

DAG construction

To properly evaluate the performance of our scheduler, randomized DAGs com-
posed of random selections of these three kernels are implemented. By tuning
the parameters, it is possible to achieve di�erent degrees of average parallelism
and thus generate di�erent scheduling scenarios.

To generate a suitable randomized DAG, a set of con�guration parameters are
used, similar to the generation of DAGs by Topcuoglu et al. [28]. The �rst pa-
rameter is the number of tasks of each kernel. This is used to choose which
kernel should be most prominent in the DAG. The second parameter is the av-
erage width of the DAG. This is used to obtain the desired level of parallelism.
The last con�guration parameter, the edge rate parameter, determines the av-
erage amount of connected edges a task has, which also a�ects the parallelism
of the DAG. A seed value is used to manipulate the randomization to recreate a
di�erent DAG several times for comparison.

Image Classi�cation

We also ported the VGG-16 [27] image classi�cation model from the Darknet
framework [23]. This application uses a 16-layer deep convolutional neural net-
works (CNNs) to classify an image using a pre-trained model. Each convolu-
tional (CONV) and fully-connected (FC) layer implements GEneral Matrix Multi-
ply (GEMM) that takes most of the computation time. Figure 4.4 shows the XiTAO
implementation of VGG-16. In VGG-16, the input size varies as the network pro-
gresses. For example, the convolutional layer iterates over a minimum 64 chan-

D3.2 Version 1.0 28 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

nels to a maximum of 512 channels. Therefore, in the XiTAO implementation we
partition the work among TAOs. The number of TAOs in each layer depends on
the number of channels and block_length. The parameter block_length refers
to the number of channels assigned to each TAO, which is tuned at runtime.
Each TAO performs parallel GEMMwith the number of threads equal to thewidth
of TAO. Note that the width is dynamically determined by the XiTAO scheduler.
Since there are no loop carried dependencies inside the layer we bene�t from
two levels of parallelism in the XiTAO implementation. However, each layer is
dependent on the previous layer, we therefore synchronize all TAOs at the end
of each layer.

4.1.2.4. Performance Evaluation

We now present our evaluation of the XiTAO performance scheduler on the ran-
dom DAGs and the Imagenet VGG-16 application.

Comparison with Homogeneous Scheduler

Figure 4.5 shows a throughput heatmap for two schedulers: a homogeneous
scheduler (randomwork stealingwith no taskmoldability) and the performance-
based scheduler using the PTT. Each benchmark executes between 250-4000
tasks (X-Axis) on random DAGs with a parallelism between 1-16 (Y-Axis). The un-
derlying randomDAG is a combination of the aforementioned kernels with equal
proportions. In the most challenging case with low task count and parallelism
(tasks=250, par=1), we observe that the temperature of the performance-based
scheduler (depicted by Figure 4.5a) is at least twice higher (meaning twice the
throughput). The additional ingredient of scheduling critical tasks on the high
performing cores (mainly Denver cores in this case) and the ability to dynami-
cally tune the resource width renders this scheduler superior even with no ex-
ternal task-DAG parallelism.

250 500 1000 2000 4000
Task Number

16

8

4

2

1

Pa
ra

lle
lis

m

500

750

1000

1250

1500

Throughput(TAOs/s)

(a) Performance-based Scheduler

250 500 1000 2000 4000
Task Number

16

8

4

2

1

Pa
ra

lle
lis

m

500

750

1000

1250

1500

Throughput(TAOs/s)

(b) Homogeneous Scheduler

Figure 4.5. The performance impact over parallelism and number of TAOs and the per-
formance comparison between performance-based scheduler and homogeneous sched-
uler.

The throughput is higher across the table except for a few cases of very high
parallelism that pose almost no challenge on scheduling decisions. Another in-
teresting yet expected observation is that the number of tasks plays a negligible
role on the performance of the homogeneous scheduler, whereas the through-
put of the counterpart is a factor of both axes. A twofold increase in the number

D3.2 Version 1.0 29 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

0 2 4 6 8 10 12 14
Elapsed Time [s]

0
1
2
3
4
5
6
7
8
9

Th
re

ad

8

10

12

14

16

18

20

PT
T

Va
lu

e
[m

s]

(a) Dynamic migration of processes in re-
sponse to PTT spikes during interference.

0 2 4 6 8 10 12 14
Elapsed Time [s]

0
1
2
3
4
5
6
7
8
9

Th
re

ad

(b) The scheduler’s behavior when there is
no interference

Figure 4.6. The e�ect of interference on PTT scheduling of critical tasks.

of tasks provides twice the amount of PTT training data. This directly re�ects on
the performance by improving the quality of the dynamic, PTT-based choices.
In addition, a higher degree of parallelism (on the Y-Axis) permits a better uti-
lization of the resources.

Process Interference

One of the remarkable advantages of using PTT is maximizing performance via
minimizing the side e�ects of interference. This feature is especially important
since it is often the case that user or kernel level resources are shared. Fig-
ure 4.6a depicts the response of the XiTAO performance-based scheduler to a
running background parallel process, in this case a chain of MatMul DAGs, along-
side a highly parallel random DAG. The black dots represent the time-stamp at
which the threads start executing critical-path TAOs. A vertical green line shows
the resource partition used to execute the TAO, the absence of a green line in-
dicates that a single core is used for this critical task. While bootstrapping the
PTT, a few width choices are attempted. At the point of interference (i.e. in Fig-
ure 4.6a), we show the PTT value at (width=1,core=1). Other relevant values are
dropped for brevity. Due to the jitters in PTT values, the scheduler automatically
selects cores from (2-9) for executing the critical tasks. Cores (0-1) are still se-
lected under typical circumstances according to Figure 4.6b. Shortly after the in-
terference event, the scheduler recovers to normal operation yielding amarginal
wall time di�erence across the two experiments. Note that non-critical task con-
tinue to be executed on cores with interference, as long as these "slower" cores
succeed in stealing tasks. This is important so that the PTT is continuously up-
dated to re�ect the status of the system.

ImageNET Classi�cation

Figure 4.7 depicts a strong scalability study of the performance of the XiTAO
version of the VGG-16 code for predicting a prede�ned image class by multi-
ple convolutions of a crop layer (1024 x 1024) converted to matrix (512 x 512 x 3).
The study is to assess the scheduling performance of the conventional fork-join
application class with minimal e�ort. It is carried out on a dual-socket Intel
Haswell platform. XiTAO, in combination with the PTT, exhibits 69% parallel ef-
�ciency compared to linear scaling. In this experiment there is no criticality

D3.2 Version 1.0 30 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

40,23

21,24

11,21
6,63

3,62

0

10

20

30

40

50

Serial 2 4 8 16
Ti

m
e

[s
]

Number of threads

Figure 4.7. Performance of CPU GEMM on XiTAO VGG-16 with variable number of threads

notion, i.e., all tasks are marked non-critical. Figure 4.8 shows the number of
TAOs scheduled with corresponding widths. During execution, the PTT chooses
the best width to schedule a TAO. For example, in the case of running VGG-16
with 8 threads, 67% of TAOs are scheduled with width = 1 and 30% TAOs are
scheduled with width = 8, indicating that these widths led to the best speed-up
during execution.

4.1.3. The XiTAO Public Release

The XiTAO runtime’s code has been documented and released as open source
(available on https://github.com/mpericas/xitao) under the BSD 3-Clause Li-
cense. In order to facilitate future collaboration, the code follows the Doxygen
formatting standard. Using a simple parallel dot-product example, the docu-
mentation describes the necessary classes and functions used to generate the
TAO-DAG, trigger and �nalize the runtime. The following benchmarks are avail-
able as experimental use cases for XiTAO:

• HEAT: an iterative blocked Jacobi heat di�usion solver that validates the
XiTAO’s mapping of software to hardware topologies. The benchmark ex-
poses the decomposed domain and the XiTAO runtime maps it according
to the NUMA nodes of the platform. The domain is decomposed in two di-
mensions x,y, both internally and externally. The internal decomposition
refers to the DAG inside the TAOs, while the external decomposition refers
to the TAO-DAG [22].

• Random DAGs: a parametric graph generator that is designed to gener-
ate weighted directed acyclic graphs with various characteristics, adopted
from [28]. The DAG nodes can be either matrix multiply nodes (compute-
intensive), streaming nodes (memory intensive), or sort nodes (cache-intensive)

• Dot product: a parallel dot product example that provides a simple usage
of the basic XiTAO features (see Listing 4.1). The implementation of Vec-
MulDyn shown in Listing 4.2 represents an internal dynamic scheduler for
the dot product TAO that overdecomposes the input to create small work
units to be fetched dynamically. VecMulSta is an alternative static sched-
uler but is dropped for brevity.

• VGG-16: an external image classi�er that is forked from the Darknet repos-
itory.

D3.2 Version 1.0 31 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

69
,0
6

90
,8

9

66
,6

7

53
,8

1

30
,9
4

5,
83

3,
38

1,
683,
28

0,
74

14
,7
629

,2
1

29
,3
1

0,
45

0

20

40

60

80

100

2 4 8 16
Pe

rc
en

ta
ge

 o
f T

AO
s

w
.r.

t
TA

O
-w

id
th

Number of threads

1
2
4
8
16

Figure 4.8. Percentage of TAOs scheduled with corresponding TAO width by PTT

1 // i n i t XiTAO runtime
2 gotao_ in i t () ;
3
4 // create numvm number of TAOs
5 in t numvm = len / block ;
6
7 // s t a t i c or dynamic in te rna l TAO scheduler
8 # i f de f STATIC
9 VecMulSta *vm[numvm] ;
10 #else
11 VecMulDyn *vm[numvm] ;
12 #endif
13 VecAdd *va = new VecAdd (C , &D , len , width) ;
14
15 // Create the TAODAG
16 for (i n t j = 0 ; j < numvm; j ++) {
17 # i f d e f STATIC
18 vm[j] = new VecMulSta (A+ j * block , B+ j * block , C+ j * block , block , width) ;
19 # else
20 vm[j] = new VecMulDyn (A+ j * block , B+ j * block , C+ j * block , block , width) ;
21 # endif
22 //Create an edge
23 vm[j]−>make_edge (va) ;
24 //Push current root to assigned queue
25 gotao_push (vm[j] , j % gotao_nthreads) ;
26 }
27 // S ta r t the TAODAG exeuction
28 gotao_start () ;
29
30 // F i na l i z e and claim resources back
31 gotao_ f in i () ;

Listing 4.1. A simple parallel dot product example using the XiTAO API.

4.2. OmpSs
This section describes the status of the OmpSs runtime work that has been per-
formed in the LEGaTO project. We start by describing the OmpSs@FPGA infras-
tructure to program hybrid CPU-FPGA systems, and proceed with a description
of the OmpSs@Cluster runtime that targets scalable execution of OmpSs appli-
cations on cluster hardware.

4.2.1. OmpSs@FPGA

In this section, we describe the current implementation of OmpSs@FPGA, and
we present the study and evaluation of the benchmarks matrix multiplication,
cholesky decomposition and Nbody.

4.2.1.1. OmpSs@FPGA Ecosystem

The OmpSs [25, 9] programming model allows to express parallelism that will
be executed in the available resources among the host SMP cores, or integrat-
ed/discrete GPUs and/or FPGAs. OmpSs is based on task parallelism, and very

D3.2 Version 1.0 32 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 /* ! t h i s TAO w i l l take two vectors and mult ip ly them .
2 This TAO implements in te rna l dynamic scheduling . */
3 c lass VecMulDyn : publ ic AssemblyTask
4 {
5 publ ic :
6 # i f defined (CRIT_PERF_SCHED)
7 // ! A publ ic s t a t i c c lass var iab le .
8 /* !
9 I t holds the performance trace table for the corresponding TAO .
10 */
11 s t a t i c f l o a t t ime_table [] [GOTAO_NTHREADS] ;
12 # endif
13 // ! VecMulDyn TAO constructor .
14 /* !
15 \param _A i s the A vector
16 \param _B i s the B vector
17 \param _C i s the Result vector
18 \param _len i s the length of the vector
19 \param width i s the number of resources used by th i s TAO
20 The constructor computes the number of elements per thread and overdecomposes the domain using PSLACK parameter
21 In th i s simple example , we do not i n s t a t i a t e a dynamic scheduler (yet)
22 */
23 VecMulDyn (double *_A , double *_B , double *_C , i n t _len ,
24 i n t width) : A (_A) , B (_B) , C (_C) , len (_len) , AssemblyTask (width)
25 {
26 i f (len % (width)) std : : cout << "Warning : blocklength i s not a mult iple of TAO width\n" ;
27 b locks i ze = len / (width *PSLACK) ;
28 i f (! b locks i ze) std : : cout << " Block Length needs to be bigger than " << (width *PSLACK) << std : : endl ;
29 blocks = len / blocks i ze ;
30 next = 0 ;
31 }
32
33 // ! Inher i ted pure v i r t u a l funct ion that i s ca l led by the runtime to cleanup any resources (i f any) , held by a TAO .
34 i n t cleanup () {
35 }
36
37 // ! Inher i ted pure v i r t u a l funct ion that i s ca l led by the runtime upon executing the TAO .
38 /* !
39 \param threadid l o g i c a l thread id that executes the TAO
40 This assembly can work t o t a l l y asynchronously
41 */
42 in t execute (i n t threadid)
43 {
44 // in t t i d = threadid − leader ;
45 while (1) {
46 i n t blockid = next ++ ;
47 i f (blockid > blocks) return 0 ;
48 for (i n t i = blockid * b locks i ze ; (i < len) && (i < (blockid + 1) * b locks i ze) ; i ++)
49 C [i] = A [i] * B [i] ;
50 }
51 }
52 # i f defined (CRIT_PERF_SCHED)
53 // ! Inher i ted pure v i r t u a l funct ion that i s ca l led by the performance based scheduler to set an entry in PTT
54 /* !
55 \param threadid l o g i c a l thread id that executes the TAO
56 \param t i c k s the number of elapsed t i c k s
57 \param index the index of the width type
58 \sa time_table ()
59 */
60 in t set_t imetable (i n t threadid , f l o a t t i cks , i n t index)
61 {
62 time_table [index] [threadid] = t i c k s ;
63 }
64
65 // ! Inher i ted pure v i r t u a l funct ion that i s ca l led by the performance based scheduler to get an entry in PTT
66 /* !
67 \param threadid l o g i c a l thread id that executes the TAO
68 \param index the index of the width type
69 \sa time_table ()
70 */
71 f l oa t get_t imetable (i n t threadid , i n t index)
72 {
73 f l oa t time =0;
74 time = time_table [index] [threadid] ;
75 return time ;
76 }
77 # endif
78 i n t blocks ; /* ! < TAO implementation spec i f i c in teger that holds the number of blocks per TAO */
79 in t b locks i ze ; /* ! < TAO implementation spec i f i c in teger that holds the number of elements per block */
80 in t len ; /* ! < TAO implementation spec i f i c in teger that holds the vector length */
81 double *A ; /* ! < TAO implementation spec i f i c double array that holds the A vector */
82 double *B ; /* ! < TAO implementation spec i f i c double array that holds the B vector */
83 double *C ; /* ! < TAO implementation spec i f i c double array that holds the resu l t vector */
84 atomic < int > next ; /* ! < TAO implementation spec i f i c atomic var iab le to provide thread safe t racker of the number of

processed blocks */
85 } ;

Listing 4.2. TAO’s dot product class using an internal dynamic scheduler.

D3.2 Version 1.0 33 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

similar to OpenMP tasking. It is being used as a forerunner prototyping envi-
ronment for future OpenMP features. On GPUs, both CUDA and OpenCL kernels
are supported. For FPGAs, OmpSs uses the vendor IP generation tools (Xilinx
Vivado and Vivado HLS [19, 30], or Altera Quartus [13]), to generate the hardware
con�guration from high-level code. OmpSs@FPGA can also leverage existing IP
cores, provided they adhere to the same interface with our software platform.

OmpSs@FPGA is a signi�cant upgrade of the OmpSs infrastructure (Mercurium
source-to-source compiler and Nanos++ runtime) to incorporate FPGA support.
Figure 4.9 shows an example of an OmpSs application. In particular, function
matrix_multiply is de�ned as a task with input dependencies a and b and in-
put/output dependency c. Each call to this function will be converted in a task
that will be run when its dependencies are ready. This task has also been de-
�ned to be potentially executed in two target devices: any of the cores of the
smp running the application and three instances of an accelerator that will be
built to do this task in the FPGA. The accelerator has been tuned by the pro-
grammer to exploit the parallelism of the FPGA by using some additional direc-
tives (#pragma HLS) not related to OmpSs programming model. In the following
sections, we will describe how the OmpSs compilation and runtime ecosystem
helps programmability, heterogeneity, memory transfers and tracing support,
and �nally, mechanisms to develop blocking techniques from inside the FPGA.

4.2.1.2. Programming Productivity

Figure 4.10 shows the toolchain �ow. In particular, it currently supports Xilinx
FPGAs using the Vivado HLS and Vivado tools through our autoVivado tool.

At the compilation level, the OmpSs application is split in two parts according to
the OmpSs directives. All functions annotated with the target device(fpga) direc-
tive are de�ned as tasks that will be transfered to the Vivado HLS tool for compi-
lation to IP cores. Additionally, the Mercurium compiler generates a stub/wrap-
per function for each task, used to invoke the corresponding IP core from our
Nanos++ runtime system, adapting the parameter passing. autoVivado tool in-
vokes Vivado HLS to transform the wrapper functions and the FPGA-annotated
functions into IP cores. Then, autoVivado connects them to the rest of the sys-
tem using Vivado and generates the bitstream with the accelerators. Also, a
con�guration �le (xtasks.con�g) with accelerator metadata is generated. This
is necessary for the Nanos++ runtime in order to know the type and number of
accelerators in the FPGA. This compilation process is automatically done by the
compiler avoiding hand made code errors and speeding up all the process of
hardware generation for the supported platforms (Zynq 7000 and Ultrascale+
families).

On the other hand, Nanos++ is the OmpSs runtime system. It takes care of exe-
cuting tasks annotated by the programmer in the available resources. The high-
level view of the execution environment is presented in Figure 4.11.

Nanos++ environment has a thread team created by default, the dependence
graph used to organize tasks that still have pending data dependences to be
resolved, and the task pool representing all the ready tasks. Running threads
create tasks and insert them into the dependence graph. When data depen-
dences have been ful�lled, the thread detecting this situation moves the tasks

D3.2 Version 1.0 34 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 #pragma omp target device (fpga , smp) copy_deps num_instances (3)
2 #pragma omp task in ([BS] a , [BS]b) inout ([BS] c)
3 void matr ix_mult ip ly (f l o a t a [BS] [BS] ,
4 f l o a t b [BS] [BS] , f l o a t c [BS] [BS]) {
5 #pragma HLS in l i ne
6 #pragma HLS ar ray_par t i t i on var iab le =a \
7 block fac to r =BS/2 dim=2
8 #pragma HLS ar ray_par t i t i on var iab le =b \
9 block fac to r =BS/2 dim=1
10 for (i n t ia = 0 ; ia < BS ; ++ ia)
11 for (i n t ib = 0 ; ib < BS ; ++ ib) {
12 #pragma HLS PIPELINE I I =1
13 f l oa t sum = 0;
14 for (i n t id = 0 ; id < BS ; ++ id)
15 sum += a [ia] [id] * b [id] [ib] ;
16 c [ia] [ib] += sum ;
17 } }
18 . . .
19 for (i =0 ; i <NBI ; i ++)
20 for (j =0 ; j <NBJ ; j ++)
21 for (k =0 ; k<NBK ; k ++)
22 matr ix_mult ip ly (AA [i] [k] , BB [k] [j] , CC [i] [j]) ;
23 #pragma omp taskwait
24 . . .
25 }

Figure 4.9. First version of FPGA Matrix Multiply code

Figure 4.10. OmpSs compilation env. with FPGA support

D3.2 Version 1.0 35 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.11. High-level representation of the Nanos++ environment

now free of dependences to the task pool. When a thread �nishes the execution
of a task, it becomes idle and it looks for work in the task pool. The Nanos++
runtime will also take care of the possible heterogeneity expressed by the pro-
grammer and the necessary memory transfers (copies).

On the FPGA side, an special IP, called Task Manager, is in charge of the manage-
ment of the accelerator executions and �nalizations. It will provide the accel-
erator with the information of a task, written by the Nanos++ runtime in shared
memory. Then, once the accelerator �nalizes, the Task Manager will be signaled
by the output stream port of the accelerator to indicate the end of the task. Fi-
nally, the Task Manager will notify the Nanos++ runtime of the �nalization of the
task.

4.2.1.3. Heterogeneity Support

Figure 4.9 example code includes a target device directive that indicates two tar-
get devices for the de�ned task: smp and fpga. This means that any invocation
to this task can be run either in the smp or the fpga, transparently to the pro-
grammer. The code to be run is the same, one accelerated in the FPGA, and the
another executed in the SMP. In the case of the fpga device, the num_instances
clause is used to express howmany instances of the given IP core (fpga task) the
programmer decides to generate; in this case three instances. Those tasks, of
the same type, may potentially run in parallel at runtime in both smp and fpga.
The runtime system will know through the con�guration �le (xtasks.con�g) the
number of instances available of each accelerator type de�ned by the program-
mer.

On heterogeneous environments, Nanos++ has a speci�c subset of threads that
represent each of the heterogeneous devices. We call these threads helper
threads. Figure 4.11 shows, on the left side, the code invoking the heteroge-
neous task matrix_multiply and, on the right side, the overview of threads and
task pool in the runtime. The orange thread (thread number 4, on the right hand
side of the Global thread team) in the �gure is one of those helper threads. In
this particular example, it may represent one FPGA accelerator.

Tasks can be also annotated with the implements(funcname) clause, indicating
that such task is a di�erent implementation of the same algorithm that func-
name implements. This allows the runtime system to select the best version to

D3.2 Version 1.0 36 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 #pragma omp target device (smp) copy_inout ([BS] c) \
2 implements (matr ix_mult ip ly)
3 #pragma omp task in ([BS] a , [BS]b) inout ([BS] c)
4 void matmulBlockSmp (f l oa t a [BS] [BS] ,
5 f l o a t b [BS] [BS] , f l o a t c [BS] [BS]) {
6 const f l oa t alpha = 1 . 0 ;
7 const f l oa t beta = 1 . 0 ;
8 cblas_gemm (CblasRM , CblasNT , CblasNT , \
9 BS , BS , BS , alpha , a , BS , b , BS , beta , c , BS) ;
10 }

Figure 4.12. Implements version of SMP Matrix Multiply code (no castings done)

run at any given point in time. This is done by applying a scheduling policy that
takes these alternative implementations into account.

Tasks annotated with the implements clause implement the same functionality
as other tasks but with a di�erent code. At compile time, two (or more) versions
of the task are built targeting di�erent computing units. At runtime, those tasks
can be executed on an SMP core or more devices. This means that when the
runtime system �nds one of these tasks in the ready queue, it can be grabbed
by a regular worker thread, that will execute the SMP version of the task in a
SMP core. Or the task can be grabbed by one of the helper threads, and then
the device version of that task will be executed in the device represented by
the thread, transparently to the programmer (as shown in Figure 4.11 for the
Matrix Multiply). Figure 4.12 shows the code that implements the function listed
in Figure 4.9 in SMP by using OpenBLAS gemm.

4.2.1.4. Memory Transfers Support

Tasks executing in devices, with their own local memory, may need copy data
from/to the device. In particular, the device memory space is main memory in
the SMP, accessible from the accelerators and the SMP cores, physically contigu-
ous, pinned and non-cacheable. With copy_deps clause the programmer indi-
cates that all the dependences will require, at runtime, device memory space
for copies between host memory and accelerators local memory. Alternatively,
copy_in/out/inout(list-of-variables-with-size) clauses indicate the list of param-
eters of the task that needs to be copied to/from the accelerator and deactivate
the by default copy_deps clause. In both cases, the runtime takes care of al-
locating device memory and copies between user and device memory for the
list of parameters labeled as copies. Task parameters that are not indicated to
be copied by the programmer should have been previously allocated in device
memory (using our Nanos++ runtime API) so that the accelerator can access to
that memory. If any of the task parameters is a scalar it is not needed to spec-
ify any copy, neither the user has to pre-allocate device memory; it is directly
passed to the accelerator.

As mentioned, a wrapper is generated for each task so that accelerators and
runtime can communicate with each other. The work to be done by the wrap-
per is to get information of the task (address of each parameter) and output

D3.2 Version 1.0 37 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

�nal signal, and optionally (based on some compilation �ags), get/write tracing
information, reserve local memory for some of the parameters, copy the data
from/to device memory to/from local memory, and do timing instrumentation.
In detail, the wrapper reads the address of each parameter of the accelerator
using an input stream port of the wrapper IP, which is connected to our Task
Manager IP (see Figure 4.10). Then, it maps the parameter address to an IP port
connected to the external memory, using the AXI protocol, and copies the pa-
rameter data from/to device memory to/from local memory if required. In the
case that copies are not requested, the kernel code of the programmer can ac-
cess to the device memory without any change. This makes programming easy
and can be useful to apply blocking techniques in an application from inside
the FPGA, as shown in the N-body application below.

4.2.1.5. Instrumentation Support

TheOmpSs@FPGA ecosystemallows to trace the execution of the runtime threads
(running in cores) and accelerators. For the threads, it provides information
at application and runtime levels so that the programmer can analyze both
the application and runtime internals as the creation of tasks, task executions,
taskwaits, etc. For the accelerators, the current support provides the user with
the information of execution time of the data movements done by the wrapper
and the computational time of the kernel. Figure 4.18 shows an execution trace
where this information is shown for three accelerators of the Matrix Multiply
application.

This tracing feature implies hardware support for timing within the bitstream
and is transparently done to the programmer, which only has to activate the
corresponding compilation �ag. The execution trace we generate is done using
an internal tracing library and it can be visualized by Paraver tool [1].

4.2.1.6. Experimental Environment

The communication logic and all the hardware accelerators are coded in C with
Vivado HLS directives. The �nal system designs are synthesized with Vivado
Design Suite 2016.3.

The hardware platform contains a ZynqUltrascale+MPSoC Chip XCZU9EG-FFVC900 [31].
It includes the Application Processing Unit (APU) with 4 ARM Cortex-A53 cores
(that operate at 1.1GHz) and a FPGA. It has a 4GB DDR4 as main memory.

Sequential and parallel execution time of OmpSs applications are obtained in
the system which operates on Ubuntu Linux 16.04. We also use performance
tools Extrae and Paraver[1] to analyze the application behavior in our system.

4.2.1.7. Applications

Three applications have been analyzed with our current work�ow: Matrix Mul-
tiply, Cholesky and N-Body. Table 4.1 summarizes the characteristics of each
application.

Following subsections explain how each application has been implemented in
the heterogeneous system through successive High Level Optimizations using
the OmpSs@FPGA work�ow.

D3.2 Version 1.0 38 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Application Description Parameters

Matrix Multiply Blocked matrix mul-
tiply in square blocks

Matrix size, Block size

Cholesky Blocked Cholesky de-
composition of a ma-
trix

Matrix size, Block size

N-Body Blocked N-body sim-
ulation

Number of particles,
particles in a block,
time-steps

Table 4.1. Summary of applications’ characteristics

Matrix Multiplication

The �rst application ported to the OmpSs@FPGA framework was the Matrix Mul-
tiplication. Despite its apparent simplicity it is a key application as it includes
several of the properties that are found in common HPC problems as a regular
dependence pattern and a blocked implementation that involves moving sev-
eral times the same data to and from the accelerators. Figure 4.9 presents the
initial code of a matrix multiply algorithm for a block of BS × BS size that can
be used to implement a blocked matrix multiply.

In order to port this code to FPGA and use a good part of its resources, some
directives should be added to take advantage of the parallelism in the innermost
loop. Better performance would be achieved when all the multiplications and
additions of this loop are performed in parallel. Figure 4.9 shows the code with
the High Level Synthesis (HLS) pragmas used to obtain the parallel version of the
loop. The key pragma in the code is PIPELINE II=1 that says that an iteration of
the second loop should start each cycle (II = 1). To obtain this performance, the
innermost loop should be completely unrolled. To accomplish this goal, all the
elements in a row of matrix a and all the elements in a column of matrix b should
be read each cycle. Pragmas array_partition make the compiler to distribute a
by columns (second dimension dim = 2) or b by rows (�rst dimension dim = 1)
in di�erent block RAM (BRAM) memories by a factor that is half the side size of
such matrices (as each BRAM has 2 read ports).

The �rst option to create a good accelerator for the matrix multiplication in the
FPGA was to try to create an accelerator as big as it would �t in the FPGA. After
some tests, we found that an accelerator with BS = 128 �ts really well (even
three of them) in the used FPGA but withBS = 256 it was also possible to obtain
a successful compilation.

Cholesky decomposition

Cholesky Factorization is a decomposition of a Hermitian, positive-de�nite ma-
trix into the product of a lower triangular matrix and its conjugate transpose. It
computes A = LL′, with A an n × n matrix and L lower-triangular. The side of
the matrix A, n is the �rst parameter of the application. The decomposition is
made by blocks of any size (the side of the blocks is the second parameter of the
application) which results in four di�erent kernels. Figure 4.13 shows the code

D3.2 Version 1.0 39 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 void Cholesky (f l o a t **A) {
2 i n t i , j , k ;
3 for (k =0 ; k<BS ; k + +) {
4 spot r f (A [k*BS+k]) ;
5 for (i =k + 1 ; i <BS ; i ++)
6 strsm (A [k*BS+k] , A [k*BS+ i]) ;
7 for (i =k + 1 ; i <BS ; i ++) {
8 for (j =k + 1 ; j < i ; j ++)
9 sgemm(A [k*BS+ i] , A [k*BS+ j] , A [j *BS+ i]) ;
10 ssyrk (A [k*BS+ i] , A [i *BS+ i]) ;
11 } } }

Figure 4.13. Cholesky application with its four composing kernels

of the Cholesky decomposition as it is decomposed in its four kernels: spotrf,
strsm, sgemm and ssyrk. The SMP version is computed using the OpenBLAS ver-
sion of the kernels while the FPGA version implements these kernels in C and
compiles them through the HLS tool.

N-Body simulation

The N-Body simulation computes the problem of predicting the individual mo-
tions of a group of objects interacting with each other. Figure 4.14 shows the
main loop (nbody) of the application. All the forces are computed, in blocks, for
each particle against all the remaining particles. Then, the particles velocity and
positions are updated with the forces previously computed. This is done for as
many time steps as desired.

In order to decompose the problem in simpler tasks, a routine that computes
the interaction of BS objects against a set of other BS objects is used. The
computation of the forces for a block of particles is done considering all other
blocks of particles. Each call to calc_forces_BLOCK function is de�ned as a
task, which allows the OmpSs programming model to execute them in parallel
when possible.

4.2.1.8. Possibilities for performance improvements

With the help of OmpSs@FPGA, di�erent techniques can be used to improve the
performance obtained with the di�erent applications analyzed. In this section,
some of these techniques will be reviewed.

Blocking Performance impact

There may be applications with a signi�cant amount of work to be done that
may not require any SMP computation, and then, could be completely executed
in the accelerators. However, the limitation of the local memory inside the ac-
celerators (due to the available FPGA resources) and also, the communication
overhead associated, usually reduces the possibility of performing all the com-
putation in the FPGA or the performance that can be achieved. A common ap-
proach in task-based programming models is to de�ne tasks that can operate
with a limited block size and then, perform the overall computation by blocks.

D3.2 Version 1.0 40 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 #pragma omp target device (fpga) \
2 copy_in ([PARTICLE_SIZE *BS] block1 , \
3 [PARTICLE_SIZE *BS] block2) \
4 copy_inout ([FORCE_SIZE *BS] forces)
5 #pragma omp task
6 void calculate_forces_BLOCK (fo r_p t r_ t forces , \
7 par t_pt r_ t block1 , par t_pt r_ t block2 , char safe) ;
8
9 void ca lc_ forces (force_t * forces ,
10 part_t * bl , i n t n_blocks) {
11 for (i n t i = 0 ; i < n_blocks ; i ++) {
12 for (i n t j = 0 ; j < n_blocks ; j ++) {
13 fo r_p t r_ t f0 = (fo r_p t r_ t) (forces + i) ;
14 par t_pt r_ t b1 = (par t_pt r_ t) (bl + i) ;
15 par t_pt r_ t b2 = (par t_pt r_ t) (bl + j) ;
16 char safe = (b1 == b2) ;
17 calculate_forces_BLOCK (f0 , b1 , b2 , safe) ;
18 } } }
19 . . .
20 void nbody (part_t * part , fo rce_t * forces ,
21 i n t n_blocks , i n t timesteps) {
22 for (i n t t = 0 ; t < timesteps ; t ++) {
23 ca lc_ forces (forces , part , n_blocks) ;
24 update_part (n_blocks , part , forces) ;
25 }
26 }

Figure 4.14. N-body main loop and blocking version of the calculate_forces

D3.2 Version 1.0 41 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Name B_18Kb DSP48E FFs LUTs

2 BLOCK 88 (9.7%) 1014 (40.2%) 236888 (43.2%) 171200 (62.5%)
ALL FPGA 44 (4.9%) 507 (20.1%) 123446 (22.5%) 88481 (32.3%)
2 SUBBLOCK 107 (11.7%) 1014 (40.2%) 242864 (44.3%) 177116 (64.6%)

Table 4.2. Resources used by N-Body kernels in XCZU9EG-FFVC900

In the case of FPGA accelerators, applying blocking in the code running in the
SMP and using the accelerators to perform the block processing may imply sev-
eral synchronizations and communications, in addition to several copies of task
parameters between user and device memory. However, applying blocking from
the accelerator can help to decouple SMP and accelerator task executions and
reduce the total number of synchronizations between Nanos++ runtime and ac-
celerators.

N-Body simulation is the selected application to demonstrate how to use block-
ing to improve the performancewhen usingOmpSs@FPGA. The �rst implemented
version simply puts the kernel calc_forces_BLOCK into the FPGA trying to
make the computation as fast as possible. It was possible to �t 2 instances of
the function that computes the problem for 128 particles in the FPGA. Table 4.2,
row 2BLOCK shows the resources used by this and all the other implementations
presented in this section. The working frequency for all of them is 200MHz.

With the OmpSs@FPGA ecosystem it is easy to compare the performance ob-
tained by the version that executes the tasks in the FPGA against the paral-
lel version that uses the SMP cores to compute the tasks. Simply by changing
the target device in the �rst line in Figure 4.14 from smp to fpga and back, the
same code can be executed using the di�erent resources in the system (using
Nanos arguments to adjust the number of resources used in each execution).
Figure 4.15 shows the time in logarithmic scale used by these OmpSs implemen-
tations when using a di�erent number of resources to compute a 16384 particles
problem with 8 time steps. As it can be seen in the �gure, the runtime is able to
obtain a near perfect parallelism when executing on the 4 cores available in the
system. However, it can also be seen that the FPGA implementation is several
times (15x) faster than the SMP implementation, making this problem a good �t
for FPGA execution in the analyzed system. On the other hand, it can easily be
observed by the programmer that the 2 accelerators version (2 FPGA) has almost
the same performance as the 1 accelerator version (1 FPGA). The fact that Nanos
helps testing all the versions by simply changing the execution command line,
allowing the programmer to see that there is a problem with this accelerator. In
this case, the accelerators are so fast that the capacity of the threads to create
tasks is the performance limiting factor.

To further improve the performance, a new accelerator was programmed that
took care of executing the whole calc_forces function inside the FPGA (ALL
FPGA column in Figure 4.15 and ALL FPGA row in Table 4.2). Figure 4.16 shows
this calculate_forces blocking version from inside the FPGA. In this case the cal-
culate_forces_BLOCK is not de�ned as a task. The parameters forces, block1,
block2 are speci�ed to be copied. However, we have speci�ed, at compile time,
that the wrapper does not reserve local memory for the parameters (neither

D3.2 Version 1.0 42 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.15. Time of N-Body execution with di�erent blocking.

perform copies) but, connects the parameter variables of the task to external
memory ports of the IP. That means that each access to the data of the pa-
rameters is actually accessing the external device memory transparently to the
user. The programmer can perform copies to local memory (local variables in
the code) and process the local copy (in BRAM) to avoid continuously access-
ing external memory. In the code of the �gure the programmer uses memcpy
(actually this memcpy is interpreted and optimized by Vivado HLS) to perform
copies to local variables. These local variables are usually mapped to BRAM of
the FPGA. As it can be seen this accelerator is several times faster than the pre-
vious one, although it doesn’t use even half the resources available in the FPGA
fabric, it doesn’t make sense to �t two of them in it because there is no paral-
lelism available. To obtain some parallelism over this last version, a new FPGA
accelerator was developed. This new version receives the list of blocks to com-
pute and iterates over them. With this approach (FPGA SB columns in Figure 4.15
and SUBBLOCK row in Table 4.2) two instances of the accelerator �t in the FPGA
and were able to obtain a 1.87x over the previous version and a 128x over the
version using 1 SMP core.

Implements and Data�ow Performance impact

In order to obtain the best possible performance out of heterogeneous systems
it is crucial to use all the available resources whenever it is possible. In addition
to making easy the programmability of FPGA accelerators and taking care of the
necessary data transfers, OmpSs@FPGA also presents a implements clause that
is really useful for heterogeneous systems.

Along with the implements and the Matrix Multiply presented above, di�erent
matrix multiply accelerator sizes were tested in the FPGA fabric available in the
system. Table 4.3 shows in rows 1 128 Acc, 3 128 Acc and 1 256 Acc how many
resources it took to synthesize one or three accelerators of BS size 128 × 128
(128), or one accelerator of BS size 256 × 256 (256). All the accelerators listed
worked at 300MHz and as it can be deduced from the reported sizes it is not
possible to �t four 128 size accelerators or two 256 size accelerators in the FPGA.

Figure 4.17 displays the performance obtained by the three di�erent approaches.
Columns labeled 0 SMP show the performance obtained by executing the ap-

D3.2 Version 1.0 43 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 #pragma omp target device (fpga) \
2 copy_in ([PART_BSIZE * n_blocks] block1) \
3 copy_in ([PART_BSIZE * n_blocks] block2) \
4 copy_inout ([FORCE_BSIZE* n_blocks] forces)
5 #pragma omp task
6 s t a t i c void ca lcu la te_ forces (fo r_p t r_ t forces ,
7 par t_pt r_ t block1 , par t_pt r_ t block2 , i n t n_blocks) {
8 const i n t pbs = s i zeo f (f l o a t) * PART_BSIZE ;
9 const i n t fbs = s i zeo f (f l o a t) * FORCE_BSIZE ;
10 for (i n t i = 0 ; i < n_blocks ; i ++) {
11 fo r_p t r_ t l f o r ces [FORCE_BSIZE] ;
12 par t_pt r_ t lb lock1 [PART_BSIZE] ;
13 memcpy(l forces , forces + i * FORCE_BSIZE , fbs) ;
14 memcpy(lb lock1 , block1 + i *PART_BSIZE , pbs) ;
15 for (i n t j = 0 ; j < n_blocks ; j ++) {
16 f l oa t lb lock2 [PART_BSIZE] ;
17 memcpy(lblock2 , block2 + j *PART_BSIZE , pbs) ;
18 calculate_forces_BLOCK (l forces ,
19 lblock1 , lblock2 , (i == j)) ;
20 }
21 memcpy(forces + i * FORCE_BSIZE , l forces , fbs) ;
22 }
23 }

Figure 4.16. FPGA Blocking version of the calculate_forces function of N-body

Name B_18Kb DSP48E FFs LUTs

1 128 Acc 287 (15.7%) 642 (25.5%) 76147 (13.9%) 54462 (19.9%)
1 256 Acc 648 (35.5%) 1280 (50.8%) 183646 (33.5%) 107207 (39.1%)
3 128 Acc 537 (58.9%) 1920 (76.2%) 311271 (56.8%) 169670 (61.9%)
3 256 DF 644 (70.6%) 1925 (76.4%) 341902 (62.4%) 208906 (76.2%)

Table 4.3. Resources used by Matrix Multiply kernels in XCZU9EG-FFVC900

D3.2 Version 1.0 44 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.17. GFLOPs for Matrix Multiply with di�erent FPGA accelerators

plication in the FPGA accelerators alone, while columns 1 SMP to 4 SMP display
the result of using from 1 up to 4 threads to perform tasks with the code in Fig-
ure 4.12 in parallel with the FPGA. As it can be seen, the best approach in terms
of performance is not to �t a single large accelerator (1 256 Acc) but to use three
smaller accelerators in parallel. Also, note that for any possible solution, the
use of the SMP to compute matrix multiplication blocks in parallel always im-
proves the resulting performance. When using four threads with 1 accelerator or
three or more threads with 3 accelerators the performance drops from the max-
imum. This is due to the fact that there is over-subscription. E�ectively, with 1
accelerator, 1 thread is used to send tasks to the FPGA. With three accelerators,
2 threads should be used in order to feed the accelerators properly. However,
the runtime is intelligent enough to always use the best approach in the default
con�guration given the maximum performance for every con�guration. Also, it
is important to note that the exploration of all these possibilities is done with
the same code, changing only the BS size and the number of instances of the
accelerators, so reducing the programmability e�ort to a minimum.

In order to further improve the performance results, the trace of the execution
with 3 128 Matrix Multiply accelerators was extracted. Figure 4.18 shows the trace
of this execution. The four top lines in blue represent the threads and do not
show any information. The three bottom lines show in blue when the corre-
sponding FPGA accelerator is not working and in yellow when it is reading data.
In brown it can be seen the computation time and in green the writing of the out-
putmatrix back to thememory. As it can be seen from the trace, the computation
time is around 4 times shorter than the data movement time. Furthermore, the
data copies are not overlapped with the computation. From this observation a
way to improve the accelerators was devised. The idea is that doubling the ac-
celerator size increases the data size by four times but the computation size by
eight times. Therefore, if the number of cycles per operation is not signi�cantly
increased this will result in a better balance in the accelerator design while not
incrementing the DSP usage.

Following this idea to design better balanced accelerators, the number of com-
putations were limited by setting the initiation interval of the innermost loop to
2 cycles (so making the same e�ective computations in the 256 DF accelerator

D3.2 Version 1.0 45 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.18. Trace of FPGA execution with 3 128 Matrix Multiply accelerators

as in the 128 one). Also the DATAFLOW pragma was used in order to overlap the
data copies with the computation. The result of these changes can be observed
in Table 4.3 row 3 256 DF and Figure 4.17 column 3 256 DF. These new accelerators
�t in the FPGA available in the system while nearly doubling the performance
of the previous 3 128 accelerators. They take the same time to compute the re-
sults but transfer half the blocks and overlap part of these transfers with the
computation. In addition the implements clause still adds some performance
to the FPGA by using the SMP achieving 76 GFLOPs with little more that 5 Watts
consumption.

Heterogeneity and Programmability impact

Another common problem when dealing with complex applications composed
by di�erent kernels in heterogeneous environments is how to distribute such
kernels over all the di�erent resources. The OmpSs@FPGA environment can
help with this distribution by allowing di�erent possible mappings to be tested
easily and without burden to the programmer.

Cholesky decomposition application is composed of four di�erent kernel tasks
that present a complex dependence pattern that grows exponentially with the
size of the problem. Table 4.4 shows the FPGA resources used by each kernel of
the Cholesky applicationwhen implemented in the FPGAwhen di�erent blocking
sizes were used in the application. As it can be extrapolated from the results, it
is impossible to �t all the 4 kernels with a blocking size of 128 in the FPGA due to
the limited resources available. However, from previous results it is known that
the bigger the accelerator, the better the obtained performance.

One of the �rst implications of using one accelerator for each kernel is that
the execution in the FPGA would be a sequential one. However, using the im-
plements clause explained in the previous section would help us to improve
the performance signi�cantly by allowing threads to also execute kernel func-
tions. Figure 4.19 shows the time used when executing 6 di�erent versions of
the same Cholesky problem to solve a 2k equation matrix. Two implementa-
tions with di�erent block sizes (32 and 64) were tested using the SMP cores to
solve the problem (using OpenBLAS implementations of the kernels), using the
FPGA accelerators to solve the same problem and also using both (through the
implements clause).

As it can be seen in Figure 4.19 the initial FPGA alternatives (Columns FPGA
and SMP+FPGA) of the code do not lead to good performance results compared
against the SMP only alternative. Even the version that uses both SMP and FPGA
(SMP+FPGA) to compute the result is slower than the SMP only version. On one
hand, the reason behind this behavior is that including four di�erent accelera-

D3.2 Version 1.0 46 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Name B_18Kb DSP48E FFs LUTs

fgemm32 68 (3.7%) 160 (6.4%) 19771 (3.6%) 15559 (5.7%)
fsyrk32 36 (2.0%) 160 (6.4%) 19822 (3.6%) 16149 (5.9%)
ftrsm32 36 (2.0%) 104 (4.1%) 11482 (2.1%) 10875 (4.0%)
fpotrf32 10 (0.6%) 22 (0.9%) 3487 (0.6)% 3302 (1.2%)
fgemm64 74 (4.1%) 160 (6.4%) 23887 (4.4%) 30032 (11.0%)
fsyrk64 42 (2.3%) 160 (6.4%) 23849 (4.4%) 30727 (11.2%)
ftrsm64 42 (2.3%) 250 (9.9%) 28734 (5.2%) 25753 (9.4%)
fpotrf64 28 (1.5%) 22 (0.9%) 3514 (0.6%) 3350 (1.2%)

Table 4.4. Resources used by Cholesky kernels in XCZU9EG-FFVC900

Figure 4.19. Time of Cholesky execution with di�erent task mappings

D3.2 Version 1.0 47 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Size Case #SMP #HWACC0 #HWACC1 #HWACC2 #HWACC3

(2k, 32)
4a 0 41664 2016 2016 64
4a+4t 17992 23839 2015 1850 64
4g+4t 4096 10300 10371 10451 10542

(2K, 64)
4a 0 4963 496 496 32
4a+4t 2344 2667 493 448 32
4g+4t 1024 1209 1235 1258 1258

Table 4.5. Number of tasks executed in di�erent hardware units

tors in the FPGA limits the performance of each accelerator. On the other hand,
the Cholesky algorithm is not well-balanced among all its kernels. Table 4.5, rows
4a show the number of tasks executed in each accelerator when using only the
FPGA accelerators to execute all the kernels. Obviously, this number of tasks
corresponds to the number of tasks of each type that these blocking versions
have. It can be seen that there are several more gemm tasks than any other type,
so when the implements clause is used and the tasks can be executed in both
SMP cores and FPGA (rows 4a+4t), mainly all the tasks executed in SMP cores in
parallel with the accelerators are gemm tasks.

To solve the aforementioned unbalance, a second FPGA accelerated version of
Cholesky (4g+4t) is implemented with 4 gemm accelerators on the FPGA. The re-
maining kernels were implemented using the SMP cores. From the point of view
of the programmer, this new version only implies incrementing the number of
instances of the gemm FPGA accelerator and not including the instances of the
other accelerators, a change that can easily be done in the source code. The rest
of the whole program remains exactly the same. As it can be seen in table 4.5,
rows 4g+4t, the balance is signi�cantly better with this approach. Figure 4.19,
columns SMP+GEMM show the performance results obtained by this last ver-
sion of the code that uses FPGA accelerators to compute only the gemm tasks.
This last version outperforms the initial SMP only version and illustrates how
using the OmpSs@FPGA framework simpli�es the accelerator space exploration
keeping the necessary changes made by the programmer to a minimum.

4.2.2. OmpSs@Cluster

In the context of LEGaTO, we modify OmpSs-2@Cluster in order to allow inte-
gration for supporting accelerators, i.e. OmpSs-2@CUDA, OmpSs-2@FPGAs. Ac-
cordingly, transparent to the user, we introduce conceptual model of the steps
required to execute a task which, in Nanos6 terminology is called the Execu-
tion Work�ow. In order to execute a task, once a scheduling decision has been
made, Nanos6 creates an Execution Work�ow for that task, which is a depen-
dency graph that consists of a number of Execution Steps forming a small de-
pendency graph.

The execution work�ow is the mechanism that formalizes the execution of a
Task in Nanos6. It organizes the steps we need to perform for the execution of
a Task, from the moment it becomes ready (all its dependencies are satis�ed)
until it completes its execution. The steps of the execution work�ow form a
work�ow graph. A step of the work�ow can start only after all its predecessors

D3.2 Version 1.0 48 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

are completed.

Figure 4.20 presents the main components of the Task Execution Work�ow in
Nanos. In general, in order to execute a Task on a device we need to perform
the following:

1. Allocate and Pin Memory. For every symbol (variable) the Task is accessing
we need to allocate memory on the device’s address space and for some
devices we need to pin that memory, so it does not get evicted (swapped
out).

2. Data Copy. For every data access of the Task we might need to copy the
latest data in the memory allocated for the symbol the data access be-
longs in. This copy can be synchronous or asynchronous, depending on
the capabilities of the devices that participate in the copy operation.

3. Execute the Task. Once all the data copies are completed we can execute
the body of the task

4. Release Data Accesses. After the execution of the task we can release its
data accesses. This means that that we can release the dependencies of
subsequent tasks fast, taking advantage of OmpSs early release of depen-
dencies feature.

5. Noti�cation. We need to inform the dependency system that the Task has
completed.

6. Unpin. Once the task is completed we can unpin the memory it is using. In
reality, here we probably reduce a reference counter and let the memory
subsystem decide when to unpin/deallocate the memory on the device.

Figure 4.20. Task Execution Work�ow in Nanos6

The need for the Execution Work�ow, stems from our desire to support execu-
tion of Tasks in multiple types of devices, e.g. Cluster, FPGA, CUDA, SMP, etc. As a
result, the Step objects of the the ExecutionWork�ow are specialized depending
on what type of device we execute the Task on.

D3.2 Version 1.0 49 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Each device implementation, de�nes the way to allocate memory on the device,
copy data from/to the device towards the host (SMP). It knows how to o�oad-
/execute code on that device and �nally it determines what sort of actions we
need to perform in regards with releasing dependencies after the task is �n-
ished.

An ExecutionWorkflow object is created for a Task, once the scheduler decides
on which device to execute it. The worker thread that handles the Task, creates
and executes the ExecutionWorkflow and starts its execution.

The work�ow creation method takes as arguments the compute device that will
execute the Task and a memory device of that compute device, which will be
used to store the data accesses of the Task. The type of the Step objects to be
created depends on the type of these two devices. For example, if the target is a
CUDA device Nanos will create a CUDAExecutionStep for executing the Task.

Once the Execution Work�ow object is created, the worker thread will start its
execution. The execution starts from the root Step objects, i.e. the Step objects
without predecessors. Keep in mind, that some target devices might not have
use for certain types of Steps. For example, the Execution Work�ow to o�oad
a Task to a remote Cluster node, does not need to perform the Allocation
steps, because that part is handled by the cluster-related code, implicitly.

The execution of a Step might be synchronous or asynchronous. Synchronous
Steps perform their operation and release the next Steps. Asynchronous Step
implementations, setup the asynchronous operation and program a callback
which will release the subsequent steps, once the operation is completed.

4.2.2.1. Host Execution Work�ow

The simplest form of the Execution Work�ow is the one we create for executing
a Task on an SMP core. In this case, we do not need to allocate memory for the
accesses, executing the Task is as simple as calling a function and notifying the
dependency system for the Task’s completion is straightforward, since we do
not need to communicate with a remote instance of Nanos.

The only Step that might perform an action is the DataCopy Step, which might
need to bring data from a remote address space, e.g. a remote Cluster node.
We determine if this is the case, when we create the ExecutionWork�ow object
for the Task. At that point, we iterate through the data accesses of the Task
and if one of them is located currently on an address space other than the local
memory, we setup the corresponding (CUDA, Cluster, FPGA, etc.) DataCopy Step.

4.2.2.2. Cluster Execution Work�ow

The Cluster Execution Work�ow slightly di�ers that that of other devices, due to
the fact that Cluster devices are able to create subtasks. This means that, when
we o�oad a task to a remote cluster device, we o�oad part of the task-graph
of the application. The Execution Work�ow needs to be aware of this fact and
perform all the operations needed, in order to connect the two parts of the de-
pendency graph, i.e. exchange dependency and location information between
cluster nodes. This also means, we need to create two Execution Work�ows one
for o�oading the Task from the original to the remote node and on for actu-

D3.2 Version 1.0 50 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

ally running the Task on the remote node. Figure 4.21 describes graphically the
process of o�oading a Task to a remote node.

On the original node (left side), we create an Execution Work�ow which con-
sists of two special types of DataCopy Steps, namely DataLink, one Execu-
tion Step and one Notification Step. The DataLink Steps are responsible
for propagating location information on the remote task. In OmpSs@Cluster we
only fetch data in when we want to execute a Task, so at this point the DataLink
Steps will only propagate the location information about the Task data accesses.
The cluster Execution Step is the responsible for actually o�oading the Task
to the remote node. It creates and sets up and sends the cluster command
message for o�oading the Task to the remote node. Finally, the Notification
Step, on this cluster Node will interact with the local part of the dependency
system, once it receives a command message declaring that the remote Task is
completed.

On the remote node (right side), things are di�erent. Here, we will actually ex-
ecute the Task so, from the point of view of this node, this is a Host Execution
Work�ow, with the sole exception of the DataRelease Steps. The DataRe-
lease Step, is responsible for informing the original node that a data access has
been released (once the Task �nishes execution). The DataLink and DataRe-
lease Steps are the Steps that link the two parts of the dependency graph for
cluster execution. The former sends information from the original node to the
remote task and the latter, sends information back to the original node.

Figure 4.21. Using the Execution Work�ow to execute an OmpSs@Cluster Task

These Steps are currently used only for executing cluster Tasks, but if in the
future we have another device implementation, e.g. FPGA, which allows creat-

D3.2 Version 1.0 51 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

ing subtasks on the device, this would mean that the device work�ow needs to
implement DataLink and DataRelease Steps as well.

5. Runtime support for Fault Tolerance and Security
This chapter describes the current fault tolerance support in the LEGaTO runtime
to ensure reliable operation of the scalable and energy e�cient toolchain.

5.1. GPU Checkpointing
In this chapter we present the contributions of our current work in respect to
fault tolerance. In brief the following additions were performed:

1. We have extended the Fault Tolerance Interface (FTI) [2] to support trans-
parent checkpointing of data in multi-GPU/multi-node systems.

2. We optimize the checkpointing procedure.

3. We have added support for di�erential checkpoint (dCP) for GPU aplica-
tions to reduce the amount of data stored during the checkpointing pro-
cedure.

4. We have added support for incremental checkpoint (iCP) for GPU aplica-
tions to incrementally add data to the checkpoint �les.

5. We thoroughly evaluate our approach using di�erent applications on a
multi-node multi-GPU system.

5.1.1. FTI implementation

FTI is a library that provides an API to the developer to e�ciently performmulti-
level checkpointing. It is implemented in C/MPI and provides also a Fortran
interface to the user. The developer uses library function calls to de�ne which
data needs to be checkpointed as well as at which execution points a checkpoint
can be taken. At execution time the library is controlled using a con�guration
�le which de�nes several parameters. This allows the user to compile once the
application and select di�erent parameters prior executing the application, for
example select the �le format of the C/R �les. In Figure 5.1 we present a toy
example of the FTI API.

Depending on the con�guration �le FTI may spawn extra MPI processes per node
to perform asynchronous checkpoint and hide latencies of the �le system. To
guarantee that the library will not cause any damage to the application commu-
nication channels, FTI has a function call, FTI_Init() (line 6) that will perform all
the necessary actions before the application starts the real execution. FTI_Init()
will start by reading the con�guration �le that should be correctly �lled by the
user before the execution. Once the con�guration has been checked, FTI will
detect in which node each process resides and will write this topology in a
�le. Then, it will delegate a user-de�ned number of processes per node as
FT-managers and will create two MPI communicators, one for all FT-managers
and another for the application processes. The MPI communicator created by

D3.2 Version 1.0 52 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 i n t main (i n t argc , char * argv []) {
2 i n t rank , nbProcs ;
3 double *h , * g ;
4 i n t i ;
5 MPI_ In i t (&argc , &argv) ;
6 FTI_Init (argv [1] , MPI_COMM_WORLD) ;
7 MPI_Comm_size (FTI_COMM_WORLD , &nbProcs) ;
8 MPI_Comm_rank (FTI_COMM_WORLD , &rank) ;
9 h = (double *) malloc (s i zeo f (double) *nElements) ;
10 g = (double *) malloc (s i zeo f (double) *nElements) ;
11 in i tDa ta (&h,&g) ;
12 FTI_Protect (0 , &i , 1 , FTI_INTG) ;
13 FTI_Protect (1 , h , nElements , FTI_DBLE) ;
14 FTI_Protect (2 , g , nElements , FTI_DBLE) ;
15 for (i = 0 ; i < N ; i ++) {
16 FTI_Snapshot () ;
17 performComputations (h , g , i) ;
18 }
19 FTI_Finalize () ;
20 MPI_F ina l i ze () ;
21 }

1 i n t main (i n t argc , char * argv []) {
2 i n t rank , nbProcs ;
3 double *h , * g ;
4 i n t i ;
5 MPI_ In i t (&argc , &argv) ;
6 FTI_Init (argv [1] , MPI_COMM_WORLD) ;
7 MPI_Comm_size (FTI_COMM_WORLD , &nbProcs) ;
8 MPI_Comm_rank (FTI_COMM_WORLD , &rank) ;
9 cudaMallocManaged(&h , s i zeo f (double) *nElements ,

f l a g s) ;
10 cudaMalloc (&g , s i zeo f (double) *nElements) ;
11 in i tDa ta (&h,&g) ;
12 FTI_Protect (0 , &i , 1 , FTI_INTG) ;
13 FTI_Protect (1 , h , nElements , FTI_DBLE) ;
14 FTI_Protect (2 , g , nElements , FTI_DBLE) ;
15 for (i = 0 ; i < N ; i ++) {
16 FTI_Snapshot () ;
17 performComputations (h , g , i) ;
18 }
19 FTI_Finalize () ;
20 MPI_F ina l i ze () ;
21 }

Figure 5.1. Source code using FTI. FTI API calls and variables are marked as red. On the
left side we demonstrate the original FTI and on the extended one.

FTI for the application processes is called FTI_COMM_WORLD and replaces the
global communicator used in the application (MPI_COMM_WORLD). By simply re-
placing the global communicator in such a way, FTI guarantees that no message
will ever be exchanged between application processes and FT-managers within
the application. During a checkpoint the application process performs a level 1
checkpoint, thus, the data is stored in a local storage device (SSD, NVMe), after
all data is copied to the kernels I/O layer (in memory checkpoint) the applica-
tion process execution resumes. The FTI-managers are responsible to wait for
the data to be stored on the local storage device and afterwards to perform the
user speci�ed checkpoint level. For example for a level 4 checkpoint the FTI
managers copy the level 1 checkpoint to the global parallel �le system (GPFS).

Using the function FTI_Protect (line 10,11,12) the user can de�ne a continuous
memory region which will be stored in the C/R �le upon the checkpoint pro-
cedure. The function can be called multiple times to protect di�erent memory
regions. After de�ning the memory regions the developer can call FTI_Snapshot
(line 14) to instruct the library that a checkpoint can be taken. Whether a check-
point will be actually taken depends on the user-speci�ed checkpoint frequency
de�ned in the con�guration �le. On recovery FTI_Snapshot will perform the ac-
tual recovery procedure. Finally, FTI_Finalize checks that all the FT-managers
have �nished their job and free all the resources.

5.1.2. GPU Support for FTI

Our target is to provide a single API to support checkpointing of di�erent mem-
ory regions regardless of their actual physical location. An example using the
GPU/CPU checkpoint API is presented in Figure 5.1. Noticeably, in line 10 the de-
veloper allocates memory space using a uni�ed virtual memory (UVM) address
, thus this address is accessible in the host code, whereas in line 12 the devel-
oper allocates a device pointer, which is not directly accessible through host
code. In lines 14,15,16 the developer protects three di�erent memory address, a
host address , a UVM address and a device address however there are no API ex-

D3.2 Version 1.0 53 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

tensions. Interestingly, the checkpointing API has no extensions and is identical
with the one described in Section 5.1.1. In FTI_Protect the developer speci�es a
single address which can be either a host-memory address, a device memory
address or a UVM address and the FTI runtime library will handle accordingly
each di�erent address type.

5.1.2.1. FTI GPU/CPU implementation

FTI handles checkpoints in three di�erent phases. The �rst, called initialization-
phase, initializes the library and de�nes the protected memory regions. The
second C/R-phase, corresponds to the actual C/R procedure where it moves
the data from the device and host memory to the stable local storage device
(SSD, NVMe) and vice versa in the case of recovery. When the checkpoint-phase
is terminated, the application resumes normal execution, and the async-phase
starts. In the async-phase the FTI managers perform the necessary actions for
the various checkpoint levels.

To support Hybrid GPU/CPU support to FTI we extend the initialization-phase
and the C/R-phase. In the initialization-phase we identify the physical location
of the address, upon a FTI_Protect call the physical location of the data is inter-
nally determined. This is done through the CUDA driver API support, namely the
function cudaPointerGetAttributes(&attributes, address). The function raises
an error when called with a host address, whereas it returns normally with a
device or a UVM address. In the second case we further check the values of at-
tributes �eld which provide information whether the address is UVM or not. In
the end we tag each address as CPU,GPU,MANAGED.

When the checkpointing phase takes place, depending on the tag of each ad-
dress we perform a di�erent action. In the case of CPU or UVM addresses, we
invoke the normal FTI C/R procedure. In the case of UVM addresses we use the
CUDA driver to fetch the data from the GPU and move them to the stable local
storage. Finally, in the case of GPU addresses, we overlap the writing of the �le
with the data movement from the GPU side to the CPU side. This is done through
streams and asynchronous memory copies of chunks from GPU memory to host
pinned memory. The procedure of transferring data from the GPU memory to
the CPU is depicted in Figure 5.2. Each protected memory region is divided into
smaller blocks. The size of the block, from now on called communication block
(cBlock), is controlled through a con�guration option. The CPU requests from the
Host to Device (H2D) engine an asynchronous transfer of the �rst cBlock, when
the cBlock is copied to the host memory, the CPU requests the next cBlock and
starts performing the necessary actions with the current cBlock. The main ac-
tions are the following: i) Update the checkpoint integrity checksum ii) Copy the
cBlock to the I/O layer through the respective I/O library call.

Chunk1 Chunk2 Chunk3 Chunk4H2D engine

Chunk1 Chunk2 Chunk3 Chunk4CPU

Chunk1 Chunk2 Chunk3 Chunk4I/O engine

Overhead

Figure 5.2. The device to memory transfer protocol. Ideally, all the data movements are
overlapped. The user-application is delayed until all data is copied to the I/O layer.

D3.2 Version 1.0 54 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

When the data is copied to the I/O layer the CPU starts processing the next
chunk, which ideally should already be copied in the host memory by the H2D
engine. The application process does not wait for the I/O operations to �nalize,
when all data is moved to the I/O layer it informs the FTI-managers to start the
background actions and resumes execution. The described scheme is optimal
only if the time spent to compute the integrity checksum and copy the cBlock
to the I/O layer is equal to the time spent to copy the data from the device to
the host. In any other case, either the H2D engine or the CPU is idle.

5.1.3. FTI Analysis and Optimization

In this section we analyze and optimize the FTI GPU checkpoint scheme. We use
twomicro-benchmarks for pro�ling and analysis purposes. Themicro-benchmarks
check the strong/weak scaling of our approach using di�erent mixtures of de-
vice/hostmemory allocations. The �rstmicro-benchmark allocates twomemory
bu�ers, the �rst bu�er, called hBu�, is allocated on the host memory, whereas
the second one, called dBu�, is allocated on the device memory. The size of
each memory bu�er is user de�ned. The application protects these two bu�ers
and performs a checkpoint every 5 minutes. The second micro-benchmark is
identical, but the device memory is allocated using a uni�ed memory address
space.

To test both the weak and the strong scaling of our approach we execute each
benchmark on 4 di�erent node/process/GPU mappings. Speci�cally, we exe-
cuted experiments using 1 and 16 nodes, with 4 and 32 processes in each node.
When executing the application with 4 processes, the GPU devices are not shared
among the processes. In the case of 32 processes, each GPU is shared by 8 pro-
cesses in round-robin fashion. The checkpoint size of each node is 48 Gb re-
gardless of the number of processes within the node.

1 Node 16 Nodes

4
P

ro
ce

ss
es

p
er

 n
o

d
e

32
 P

ro
ce

ss
es

p
er

 n
o

d
e

MD5 I/O GPU Other

37,13s 37,07s

6,65s 5,06s

(a) Percentage of time spent to perform
di�erent actions during the checkpoint
procedure.

1 Node 16 Nodes

4
P

ro
ce

ss
es

p
er

 n
o

d
e

32
 P

ro
ce

ss
es

p
er

 n
o

d
e

2,88s

1,05s

2,83s

1,49s

MD5 I/O GPU Other

(b) Percentage of time spent to per-
form di�erent actions during the check-
point procedure, using the optimized
GPU MD5 impelementation.

Figure 5.3. Execution time breakdown of checkpoints before optimization and after op-
timization.

In Figure 5.3a we depict the results of the executed experiments when using the
non UVM micro-benchmark. The implementation demonstrates nice weak and
strong scaling, since when we compare in pairs the case of 4 processes with 32

D3.2 Version 1.0 55 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

processes and 64 with 512 processes we decrease the problem size by a factor of
8 and we observe a 8x reduction on the overhead. Interestingly, even though the
GPU devices in the case of 32 and 512 processes are shared, we do not observe
any extra overheads. In the case of weak scaling when we compare in pairs the 4
processes with the 64 and the 32 with the 512 we observe that in pairs the execu-
tions present the same overhead. Figure 5.3a also presents the execution time
spent in 4 categories, the execution time to compute the integrity checksum, the
execution time to copy the data from the GPU, the execution time spent to copy
the data to the I/O layer and the execution time spent to perform other minor
actions during the checkpoint (e.g create directories, metadata etc.). The com-
munication between the GPU and the CPU is completely overlapped, therefore
there is almost no-overhead to move the data from the GPU to the CPU. Interest-
ingly, the execution time is mainly spent in computing the integrity checksum of
the checkpoint �le. In other words, the CPU performs an increased amount of
work before storing the data. The results of the remaining memory schemes and
the UVM benchmark were omitted for brevity reasons as they presented similar
results.

5.1.3.1. Optimization of Integrity checksum

To reduce the execution time overhead of the checkpoint procedure we need to
reduce the execution time spent to compute the integrity checksum. FTI uses
the MD5 algorithm [24] as an integrity checksum. The �rst step is to implement
a GPU CUDA version of the MD5 algorithm presented in [12]. The algorithm is
represented in Figure 5.4a. The input data is splitted into smaller chunks, cuda
threads compute, in parallel, the MD5 hash of each chunk, after computing the
hash values the MD5 algorithm is applied again on the computed hashes.

chunk
0
chunk

1
chunk

2
chunk

3
chunk

4
chunk

5
chunk

6
chunk

7

GPU threads
computing
MD5 partial
checksums

Apply the same kernel iteratively
until we have single checksum

Input
data

(a) Data �ow of MD5 GPU computation.

part
0

part
n

...

A
p

p
li

ca
ti

o
n

 h
o

st

m
em

o
ry

Pinned
Memory

Copy to
GPU MD5
algorithm

Execute
Hash

0

Hash
1

Hash
m

...

Pinned
Memory

GPU MD5
algorithm

Hash
x

Hash
x+1

Hash
n

...

(b) Data �ow when applying the MD5 GPU
algorithm to data that reside in the host
memory.

Figure 5.4. MD5 computation of GPU and CPU data

Although, the parallel MD5 algorithm on FTI is easily applicable in the case of
data accessible from the device (GPU, managed), this is not the case for the data
that are allocated in the host memory. HPC applications have a huge memory
footprint, hence copying the data from the host side to the device is not an
option, as the device could not have enough free memory space to store tem-
poralily the data and apply the algorithm. On the other hand, we could pin the
user de�ned host memory regions and de�ne them as zero-copy memory re-
gions. Consequently, the memory would reside on the host side but it would be
accessible from the device memory. Pinning large regions of memory reduces
the available physical RAM on the demand-paging system. Therefore, we would
heavily reduce the performance of the code executing on the host side.

D3.2 Version 1.0 56 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Taking into account all the previous reasons, we implement the following com-
munication scheme presented in Figure 5.4b. We split the host-memory to parts,
each part is of equal size, and we process each part in sequential order. The pro-
cess is as follows, each part is copied to a pinned memory location accessible
from the device (zero-copy), we perform the GPU MD5 algorithm and we gather
the computed hashes on a GPU memory location. When all parts are processed,
the computed intermediate hash values are stored in the device memory, and
therefore, we can execute the GPU-MD5 algorithm in the intermediate results
to compute iteratively the �nal single checksum. Splitting the memory of the
host into parts allows us to control the amount of memory overhead. The larger
the size of each part, the larger the amount of memory overhead. Applying the
correct algorithm within FTI is trivial, since the variables are already tagged as
CPU, GPU, managed. Consequently, for protected variables tagged as CPU we
use the CPU-GPU implementation, whereas for the GPU, managed we use the
GPU implementation. In Figure 5.3b we present the results of checkpointing the
micro-benchmark. On the bottom left corner of each of the pies we present the
total overhead to perform the checkpoint. As expected the total time to perform
a checkpoint is heavily reduced.

5.1.3.2. Task-Based Implementation

As discussed, the CPU is waiting for the GPU to compute the MD5 checksums and
then it continues with the writing of the chunks. However, the computation of
the MD5 checksum is completely independent from the writing of the �le. Both
tasks, writing of the �le and the MD5 computation, only read the data and do
not change any value, therefore both of them can execute in parallel. We exploit
this observation and we assign a task to apply the MD5 computation on the data,
and a second task to perform the storing of the data. The tasks are executed in
parallel. The total overhead of this scheme is equal to the maximum execu-
tion time of this procedure. Noticeably, both tasks transfer data simultaneously
through the NVLINK, this could result into latencies of the I/O task. However,
copying data to the I/O layer is actually slower than copying data through the
NVLINK, therefore this scheme should not result to extra overheads of the I/O
operations as the bottleneck is the I/O layer and not the GPU-CPU transfers.

5.1.4. Evaluation

In Section 5.1.3 we have analyzed and optimized our implementation using syn-
thetic benchmarks. In this section we will use real mini-apps to evaluate di�er-
ent checkpoint scenarios of our multi-node/multi-GPU checkpoint scheme.

5.1.4.1. HPC applications

In this section we describe the applications used to evaluate our heterogeneous
checkpoint methodology. 1. Heat2D is a 2D heat distribution simulation using a
1D domain decomposition. It simulates the transition from a non-equilibrium
heat distribution to the equilibrium state. The large majority of memory used is
allocated using the UVM by Heat2D. This allowed us to increase the tested data
sets beyond the GPU main memory. 2. Jacobi solver is a real world example that
iteratively solves the Poisson equation on a rectangle with Dirichlet boundary
conditions. The algorithm uses second-order central di�erences to approximate
the Laplacian operator on the discrete grid. The benchmark allocates memory

D3.2 Version 1.0 57 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

using exclusively device memory, and therefore, the majority of the checkpoint
data is stored in the GPU side. 3. Hydro is a multi-node multi GPU benchmark
[6] which implements a 2D Eulerian scheme using a Godunov method [11]. The
application’s checkpoint data is distributed almost evenly among the CPU and
the GPU device, more precisely we simulate a problem with grid size equal to
25000× 25000, the total checkpoint size is equal to 24Gb.

5.1.4.2. Experimental Results

During the evaluation all checkpoints request a level 4 checkpoint (the �nal
checkpoint �le will be stored by the FT-managers to the GPFS). For every 4 user
processes we assign an FT-manager. Consequently, when we execute an appli-
cation with 4 application processes, we use an extra (�fth) process to transfer
the local checkpoint to the GPFS system. In the evaluation we present only the
overhead of the application process, as the FT-managers presentminimumextra
overhead [2].

We test the 3 di�erent methods implemented in this work. The initial corre-
sponds to the implementation without any optimization presented in subsec-
tion 5.1.2.1. The version 1 corresponds to the version which utilizes the GPU to
compute the MD5 checksum presented in Section 5.1.3.1 and the version 2 corre-
sponds to the task parallel version presented in Section 5.1.3.2.

1 Node 4 Nodes 8 Nodes 16 Nodes 1 Node 4 Nodes 8 Nodes 16 Nodes
64 Gb 128 Gb

0
20
40
60
80

100
120

Initial Version 1 Version 2

Node - Ckpt. Size per node

S
e

c
o

n
d

s
 (

s
)

(a) Execution time spent to checkpoint
Heat2D.

1 Node 4 Nodes 8 Nodes 16 Nodes 1 Node 4 Nodes 8 Nodes 16 Nodes
1 Proc. Per GPU 8 Proc. Per GPU

0

1

2

3

4

Initial Version 1 Version 2

Number Of Nodes - Number Of process Per GPU

S
e

c
o

n
d

s
 (

s
)

(b) Execution time spent to checkpoint
Jacobi.

4 Procs.
1 Node

16 Procs.
4 Nodes

32 Procs.
8 Nodes

64 Procs.
16 Nodes

0

5

10

15

20

Initial Version 1 Version 2

Processes - #Nodes

s
e

c
o

n
d

s
 (

s
)

(c) Execution time spent to checkpoint
Hydro.

Figure 5.5. Execution Time spent to checkpoint di�erent applications

Checkpoint UVM Address Space

We use Head2D to test the behavior of our multi-gpu/multi-node checkpoint
methodology when the application is using UVMmemory allocations. We check-
point Heat2D for two di�erent problem sizes, namely in the �rst problem we
checkpoint 16Gb per process whereas in the second we checkpoint 32Gb per-
process. The �rst problem size barely �ts in the GPU main memory at once, the
second problem size does not �t at once in the GPUmainmemory. In both cases,
the CUDA-driver is responsible to transfer and manage the UVM allocated data.

D3.2 Version 1.0 58 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

We test di�erent number of nodes, in each node we execute 4 processes, one
per GPU device, therefore the GPU devices are not shared among the processes.
Finally, the problem size is weakly scaled as the number of nodes increases.
When we use 16 nodes the total size of the problem size and thus the total size
of the checkpointed data is equal to 1Tb and 2Tb respectively.

Figure 5.5a depicts the results of our experiments for the di�erent methods. The
x-axis corresponds to the di�erent problem sizes and the di�erent node con�g-
urations, whereas the y-axis corresponds to the execution time overhead in sec-
onds. Interestingly, the checkpoint overhead does not increase as we increase
the number of nodes for the two di�erent problem sizes. During the checkpoint
each application process stores temporarily the data into the local NVMe device
and the FT-managers are responsible to move the data to the GPFS, therefore
the application overhead remains constant, regardless of the number of nodes.
As expected, the overhead decreases as we apply our optimized methods. When
we compare the �rst version with the initial version we obtain a 7.2X reduction
in the overhead, whereas when we compare the second version with the initial
one the overhead is reduced by 12.05X . The same amount of reduction is ob-
served in both problem sizes, consequently our implementation strongly scales.

Shared GPU among Processes

In Jacobi we test the behavior of our implementation, when multiple processes
share the same GPU device. We execute two di�erent sets of experiments, in the
�rst set there is a 1:1 ratio between the number of processes to the number of
GPUs. In other words, each GPU is used only by a speci�c CPU. On the second
set we use a 8:1 ratio, 8 processes share the same GPU. Once more, we evaluate
the weak scaling of our method, each application rank solves a local domain
size of 8192× 8192 elements which corresponds to per process checkpoint size
of 1Gb. We execute both ratio con�gurations on di�erent number of nodes. The
results are depicted in Figure 5.5b. The Y-axis presents the overhead in seconds,
whereas the X axis represents, the di�erent node/GPU per process con�gura-
tions. Recall, that each node consists of 4 GPUs, therefore on the 1:1 ratio we
execute 4 user processes per node, whereas on the 8:1 con�guration we execute
32 processes per node.

When we compare the di�erent versions with the initial one, for the 1:1 CPU to
GPU ratio, the speed up of the �rst version executes 12 times faster than the
initial one while the second ones executes 15 times faster. In the case of the 8:1
ratio the speed up is dropped to 5.3x and 5.7x for the two versions respectively.
The slow down in comparison with the 1:1 version is due to the latency of the
I/O layer and not due to the latency of the transfers from the GPU device to the
CPU device. The processes among the same layer share the I/O layer, increasing
the amount of data stored in this layer should also increase the execution time
of the procedure.

Finally, both ratio con�gurations correspond to the best case scenario of the
version 1 implementation, as almost all the checkpoint data is stored in the
GPU side, therefore the MD5 GPU algorithm is executed without any intermedi-
ate copy steps, and therefore, the computation is completely o�oaded asyn-
chronously to the GPU device and the main process spends time to execute the

D3.2 Version 1.0 59 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

streaming computations.

Strong Scaling of multi-GPU/multi-node checkpoint

In the case of Hydro we test the strong scaling of our method. In Hydro the data
is almost evenly distributed among the GPU memory and the CPU. Data in the
GPU device does not use UVM address space, consequently it is not accessible
directly from the Host. Figure 5.5c depicts the results of our experiments. When
comparing the version 1 with the initial one, the overhead is reduced by a factor
of 11x, regardless of the node con�guration. However, in contrast to the previous
applications, we do not observe extra bene�ts from the second optimization
(version 2). This is because, Hydro checkpoints 50 di�erent memory regions,
except the smallest node con�guration, in all the remaining cases these regions
�t in intermediate pinned bu�er of the �rst implementation. Consequently, the
CPU only needs to o�oad the computation to the GPU and synchronize with the
device at the end of checkpoint procedure. Therefore the version 1 with version
2 are almost identical in terms of performance.

5.1.5. Di�erential Checkpoint Support for GPU data

Di�erential checkpoint (dCP) is de�ned as the procedure that stores in the CR
�le only the data that have changed a value in comparison with the previous
checkpoint. The dCP implementation in FTI is performed in the following steps,
each protected variable is divided into chunks, for each chunkwe compute aMD5
checksum1 as described in 5.1.3.1, the checksum of the data residing currently in
the memory of the system (device or host) are compared with the checksum
of the data of the previous checkpoint �le. If the checksums di�er this data
is written in the �le. Writing dCP updates of a checkpoint �le is supported via
two di�erent checkpoint �le formats. The one called FTIFF is described in de-
tail in [16] and updates the dirty data in-place, whereas the second one, called
dcpPosix, always appends the dirty data to the end of the checkpoint �le. There-
fore, during a checkpoint dcpPosix scales linearly to the amount of data to be
updated, but always increases the �le size. This observation leads to prolonged
recovery time, as we need to search in the �le the latest correct data. On the
other hand, fti� is slower during the checkpoint, since it seek to the correct
�le position to update in place the data but does not add any extra overheads
during recovery. The support for GPU data is identical to the one described in
Section 5.1.2.

5.1.6. Incremental Checkpoint Support for GPU data

We de�ne incremental checkpointing as the procedure where the data is incre-
mentally written to the checkpoint �le. This technique serves primarily to avoid
overhead caused by oversaturated network channels. It can be used to store
data that is produced at di�erent timings. The partial data can be written to �le
themoment they are produced. A typical use case of such amechanism is mutli-
threaded applications (for example OpenMP ones) with each thread computing
a subset of the entire data set. After the data is computed the same thread can
incrementally add the partial data to the checkpoint �le.

1The MD5 checksums are computed already for the integrity checksum, therefore we do not
add any extra execution time overhead for the dCP

D3.2 Version 1.0 60 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 i n t F T I _ I n i t I C P (i n t id , i n t leve l , bool ac t i va te) ;
2 i n t FTI_AddVarICP (i n t varID) ;
3 i n t F T I _ F i na l i z e I CP () ;
4 i n t FTI_RecoverVar (i n t varID) ;

Listing 5.1. API for incremental checkpoint.

The API of FTI to perform incremental checkpoint is presented in Listing 5.1. Af-
ter protecting the various memory spaces (device or host), the user can start
the incremental checkpoint procedure using the FTI_InitICP function call. From
the point on during the execution time of the application the user can update
data of the checkpoint �le using FTI_AddVarICP, function call. Finally, when all
necessary data are updated, the user needs to call the FTI_FinalizeICP function
call. Respectively, upon recovery the user can use the FTI_RecoverVar function
to recover speci�c variables from the checkpoint �le.

5.1.6.1. Fault tolerance design for the Nanos++ runtime system

The support for fault tolerance in the Nanos++ runtime system will be based on
the di�erential and incremental checkpoint methodologies of the FTI library and
the execution work�ow of the Nanos++. During the application execution the
runtimewill exploit the execution work�ow of the application andwill inform FTI
about the memory regions that have changed their values. In other words, when
the runtime system identi�es a consistent state to checkpoint the application,
it will perform the following steps:

1. Call FTI_InitICP from all the nodes,

2. Update the checkpoint �le using the FTI_AddVarICP all the memory loca-
tions that have already changed their values. This can be tracked by the
runtime system using the information of the task creation arguments (out
or inout). Noticeably, memory regions that are used only as in arguments,
will be pushed to the checkpoint �le only during the �rst checkpoint.

3. Add to the checkpoint �le the state of the runtime itself.

4. Call the FTI_FinalizeICP function to terminate the checkpoint procedure.

In Nanos the tasks operate on data copies, and not the original data, the original
data is updated by explicitly copy-in, and copy-out memory regions. We will
experiment with this feature to identify opportunities to overlap the checkpoint
of the application with the execution of the application.

5.2. FPGA Unvervolting
Aggressive undervolting, i.e., supply voltage underscaling below the nominal/de-
fault level, is an e�ective technique to improve the energy e�ciency of the cir-
cuits; however, with the cost of the reliability issues due to the timing delay
increase. In LEGaTO, we utilize this technique to improve the energy e�ciency
of FPGAs and also to improve their resilience. In brief, our main contributions
listed below:

D3.2 Version 1.0 61 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1. The e�ect of the process variation and environmental temperature on the
resilience behavior of FPGA on-chip memories under aggressively low-
voltage operations.

2. Experimentally modeling the voltage behavior of commercial FPGAs and
the subsequent energy-resilience trade-o� for a Neural Network (NN) use-
case application.

3. Detailed undervolting fault characterization and e�cient mitigation tech-
niques for NN accelerator.

5.2.1. Introduction

FPGAs are continually obtaining more attention to accelerate NNs, thanks to the
massively parallel architecture, data-�ow execution model, and recon�gurabil-
ity feature of FPGAs as well as the recent advances on High-Level Synthesis (HLS)
tools. However, the energy e�ciency of such accelerators is still a key concern,
reported to be at least one order of magnitude less than customized ASIC-based
models [20]. To bridge this gap, several design-, compile-, and application-level
techniques can be applied to FPGAs. As an orthogonal architectural-level ap-
proach, we propose to utilize aggressive supply voltage underscaling. This tech-
nique can signi�cantly improve the energy e�ciency of the underlying hardware;
however, as a downside, it may cause timing faults and in lower voltage levels,
it may cause a system crash. In the NN applications, these timing faults can,
in turn, degrade the accuracy. We experimentally evaluate the energy-accuracy
trade-o� of a typical FPGA-based NN under extremely low-voltage operations.
We implement and demonstrate the low-voltage FPGA-based NN on four repre-
sentative FPGAs from Xilinx, a main vendor, to consider the FPGA-to-FPGA vari-
ation in the results.

5.2.2. Experimental Methodology

We perform our undervolting experiments on several Xilinx FPGA platforms with
28nm technology, i.e., VC707, ZC702, and two identical samples of KC705 (A & B),
representing performance-oriented, sw/hw, and power-optimized designs, re-
spectively. Also, note that among di�erent FPGA components, we concentrate
on on-chip memories or Block RAMs (BRAMs), since �rst, they play a key role
in the structure of the accelerator to locate the NN weights on-chip; second,
unlike other FPGA components, they have an independent voltage rail in the
studied FPGA platforms, i.e., VCCBRAM . BRAMs are small memory blocks, which
are distributed over the chip, and each basic BRAM block is a matrix of bitcells
composed of rows and columns. In studied platforms, the size of each basic
setup BRAM is 18 Kbits with 1024 rows and 18 columns. The default/nominal
voltage of BRAMs, i.e., Vnom is 1V for all of the studied platforms, set by the ven-
dor. Note that for the voltage scaling, we use Power Management Bus (PMBus)
standard to access VCCBRAM . We underscale the supply voltage by the scale of
10mV. Finally, we report the total power consumption, including dynamic and
static parts, measured using PMBus.

5.2.3. E�ect of Process Variation and Environmental Temperature

D3.2 Version 1.0 62 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(a) KC705-A. (b) KC705-B.

Figure 5.6. Fault Variation Maps (FVM) for two identical samples of KC705 at Vcrash. Totally
di�erent fault rates and fault locations (FVM) are experimentally observed.

5.2.3.1. Process Variation

We perform an analysis to understand the e�ect of the voltage underscaling on
two identical samples of the same platform, i.e. KC705-A and KC705-B. This ex-
periment can show the impact of the die-to-die process variation. We observed
that KC705-A shows a 4X higher fault rate. Furthermore, by extracting their Fault
Variation Maps (FVMs), i.e., per-BRAM fault rate associated with the physical lo-
cation of BRAMs on the chip, we observed a signi�cant di�erence in the fault
map among BRAMs, see Figure 5.6 that shows FVM of these platforms at the low-
est voltage level that we practically could underscale, i.e., Vcrash. For instance,
BRAM#(116,1) has high-vulnerability in KC705-A; however, it has low-vulnerability
in KC705-B. The consequence is that we observed a signi�cant impact of the
die-to-die process variation in the reliability behavior of FPGA BRAMs under ag-
gressively reduced voltage levels.

5.2.3.2. Environmental Temperature

We perform an experiment to study the e�ect of the environmental temperature
on the behavior of faults when VCCBRAM is lowered below the minimum safe
voltage level, i.e, Vmin. Note that Vmin is observed to be signi�cantly lower than
the nominal level, on average of 39% for all platforms. Toward this goal, we place
the FPGA platforms inside a heat chamber where we regulate the temperature
using a heater. We monitor the on-board temperature using PMBus that reads
an on-board temperature sensor. BRAMs fault rates are extracted and shown in
Figure 5.7 under the on-board temperatures of 50◦C (default temperature), 60◦C,
70◦C, and 80◦C. As can be seen, with heating up, the fault rate constantly re-
duces; for instance, by more than 3X in VC707, with the temperature increasing
from 50◦C to 80◦C. This phenomenon is the consequence of the Inverse Thermal
Independence (ITD) property [18]. ITD is a thermal property of digital devices
with nano-scale technology nodes; and states that under ultra low-voltage op-
erations, the circuit delay reduces at higher temperatures. The reason is that as
the technology node scales down, the supply voltage approaches the threshold
voltage. Hence, at low-voltage regimes, increasing the temperature reduces the
threshold voltage and allows the device to switch faster. In turn, with the circuit

D3.2 Version 1.0 63 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

delay decreasing, the number of critical paths, and subsequently, the fault rate
reduces. This property is experimentally veri�ed in our case, for commercial
FPGAs. Also, as can be seen, the fault rate in VC707 is reduced more aggres-
sively than KC705-A. For instance, the relatively 156% more fault rate in 50◦C is
reduced to 11.6% less fault rate in 80◦C, for VC707 vs. KC705-A. This behavior can
be due to the architectural and technological di�erence between these plat-
forms, since their design goal is di�erent, i.e., performance (VC707) vs. power
(KC705-A). Also, as seen, by heating up, the fault rate is signi�cantly lower for
VC705-B than KC705-A, as the consequence of the process variation.

5.2.4. Energy-resilience Trade-o� on FPGA-based NN

We study the e�ect of the aggressive undervolting on a state-of-the-art NN ap-
plication. Our experiments explained below, are based on a typical NN imple-
mentation on the FPGA [26].

5.2.4.1. Overall Resilience Behavior

The overall voltage behavior observed is illustrated in Figure 5.8. As seen, by
voltage underscaling below the default level i.e., Vnom, there is a Guardband re-
gion. The voltage guardband is set by vendors to ensure the correct functional-
ity of the device with worst-case process and environmental conditions. In this
region, there is energy e�ciency improvement without compromising the NN ac-
curacy or performance since no fault appears. By further undervolting below the
guardband and due to the circuit delay path increase, faults start to appear at
V1st−fault. However, until a minimum safe voltage level, i.e., Vmin, relatively low
fault rate is automatically covered by NN and thus, there is no accuracy loss,
i.e., Masked region. By further voltage underscaling below Vmin, the NN accu-
racy starts to being degraded, i.e., Critical region. For instance, we observe that
decreasing the voltage by 50mV leads to an NN accuracy loss of up to 3.46%.
To prevent it, we propose e�ective fault mitigation techniques that can signi�-
cantly prevent the accuracy loss up to 0.1%. Also, thanks to our fault mitigation
techniques, Vmin decreases, and thus, the NN accuracy starts to be degraded
in lower voltages of up to 30mV. Finally, by further voltage underscaling, the
FPGA system crashes with no response at Vcrash, i.e., Crash region. Note that by
experimenting on several representative FPGAs, we evaluate the FPGA-to-FPGA
variation and observe that the di�erent voltages, i.e., V1st−fault, Vmin, and Vcrash

have slight variability; however, the fault rate and in turn, the NN accuracy loss
in the Critical region is signi�cant, which can be the consequence of the process
variation, architectural di�erences, or aging.

5.2.4.2. Detailed Resilience Analysis

As described earlier in Section 5.2.4.1, we observe four voltage regions in the
accelerator. Among studied platforms, there is a slight variability in the size of
these regions, as detailed in Figure 5.9. However, as seen, the fault rate in the
Critical region and the subsequent impact on the NN accuracy is signi�cantly
di�erent among the studied platforms. This variability can be the result of the
process variation, aging, or architectural di�erences among them. Below, we
describe them in detail:

1. Guardband Region: By voltage underscaling of VCCBRAM below Vnom= 1V,

D3.2 Version 1.0 64 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(a) T=50◦C. (b) T=60◦C.

(c) T=70◦C. (d) T=80◦C.

Figure 5.7. The correlation among on-board temperature, supply voltage, architectural
technology, and fault rate for FPGA BRAMs. x-axis represents VCCBRAM from Vmin to
Vcrash and y-axis shows the fault rate per 1Mbit.

D3.2 Version 1.0 65 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.8. The overall energy/accuracy trade-o� of the FPGA-based NN.
Vnom: The default voltage level.
V1st−fault: The voltage level that the �rst fault appears.
Vmin: Below this voltage level there is NN accuracy loss.
Vcrash: Below this voltage level FPGA crashes.

we observe a large voltage guardband in [Vnom and V1st−fault) for all plat-
forms. The size of the Guardband area is measured to be 405mV on aver-
age. Guardbands are usually set by vendors to guarantee the worst-case
process and environmental conditions. In this voltage region, there is no
fault in BRAMs, and subsequently, there is no NN accuracy loss.

2. Masked Region: By further voltage underscaling below V1st−fault and until
Vmin, faults start to appear in BRAMs; however, the NN accuracy is not af-
fected, which can be due to the inherent robustness of the NN for low fault
rates. In other words, faults in this region are masked by the NN. The size
of this area is measured to be 20mV on average. We observe that the ac-
celerator is inherently robust to 1.4 faults/Mbit that occurs at Vmin= 575mV,
on average for all studied platforms.

3. Critical Region: By further voltage underscaling below Vmin, the fault rate
exponentially increases and subsequently, the NN starts to lose the ac-
curacy. As shown in Figure 5.9, there is a signi�cant variation of the fault
rate and thus, accuracy loss among platforms. For instance, as the best/-
worst platform, the voltage underscaling from Vmin= 0.59V/0.56V to Vcrash=
0.54V/0.54V in VC707/KC705-B causes 334.7/36.9 faults per 1Mbit and 3.46%/0.28%
NN accuracy loss. To prevent this accuracy loss, the accelerator is equipped
with e�ective mitigation techniques that are discussed in Section 5.2.5.

4. Crash Region: Finally, the system crashes below the Vcrash, and there is no
response from FPGA platforms. Vcrash is the lowest voltage level that we

D3.2 Version 1.0 66 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(a) VC707. (b) ZC702.

(c) KC705-A. (d) KC705-B.

Figure 5.9. Resilience behavior of the accelerator on four studied FPGAs (x-axis: VCCBRAM

(V), y-axisL: NN inference error rate (percentage), y-axisR: BRAMs fault rate (per 1Mb),
shown for Masked [V1st−fault, Vmin) and Critical [Vmin, Vcrash) regions.
+ V1st−fault, Vmin, and Vcrash are highlighted with di�erent colors.
+ Among di�erent platforms, slight variation of the voltage regions and the subsequent
signi�cant impact on the fault rate and NN accuracy in the Critical region can be seen.

D3.2 Version 1.0 67 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.10. Power saving of the accelerator at di�erent voltage regions, shown for VC707
(similar for other platforms).

could practically underscale. It is measured to be on average of 535mV
with a slight variability among platforms.

5.2.4.3. Energy Saving

By voltage underscaling, the power consumption and in turn, the energy dissipa-
tion of the accelerator also gradually decrease, as shown in detail in Figure 5.10
for VC707. We achieve an average of more than 90% of BRAMs power dissipation
savings at Vcrash in comparison to the same design at Vnom.

5.2.5. Fault Mitigation Techniques

As mentioned earlier, there is a signi�cant accuracy loss in the accelerator when
VCCBRAM is underscaled below the Vmin. Relying on the behavior of the under-
volting faults, we present techniques to mitigate the undervolting faults. These
techniques, i) prevents the NN accuracy loss, and ii) decreases the Vmin where
NN accuracy starts to be degraded. For instance, on VC707, our best technique
can decrease the Vmin, for 30mV; also, it can limit the NN accuracy loss to up to
0.1% at Vcrash.

5.2.5.1. Intelligently-constraint Memory Mapping (IMM)

By characterizing the undervolting faults, we observe that the faults are fully
non-uniformly distributed among di�erent BRAMs. For instance, as shown in
Figure 5.11 for VC707 at Vcrash, only 1.8% of BRAMs, tagged as High-vulnerable,
experience a vast majority (>90%) of faults. Keeping this point in the mind,
Intelligently-constraintMemoryMapping (IMM) aims to eliminate High-vulnerable
BRAMs. Toward this goal, IMM adds additional constraints for the Placement
stage of the design compile using Physical Blocks (Pblocks) facility of Vivado,
compile tool for Xilinx FPGAs. Note that due to a small percentage of High-
vulnerable BRAMs, the timing slack overhead of the IMM is negligible. IMM shows
signi�cant e�ciency to prevent the NN accuracy loss; although, faults in non-
High-vulnerable BRAMs still cause some accuracy loss of up to 0.85% at Vcrash,
see Figure 5.13.

D3.2 Version 1.0 68 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.11. Non-uniform fault distribution among BRAMs for VC707 with 2030 BRAMs,
classi�ed using the K-means clustering in terms of the fault rate at Vcrash (similar for
other platforms).

Figure 5.12. Di�erent types of undervolting faults, shown for VC707 (similar for other
platforms).

5.2.5.2. Error Correction Code (ECC)

As another fault mitigation technique, we evaluate the built-in ECC of BRAMs. It
is based on Hamming code with the type of Single-Error Correction and Double-
Error Detection (SECDED), which can correct single-bit faults and detect (but not
correct) double-bit faults. By an o�-line fault characterization, we found that
a vast majority (∼ 90% at Vcrash and even more in the higher voltage levels) of
undervolting faults are single-bit, see Figure 5.12. The built-in SECDED-type ECC
of BRAMs can e�ciently mitigate most of these faults. Hence, we utilize ECC
of BRAMs. As can be seen in Figure 5.13, the NN accuracy loss is signi�cantly
prevented, thanks to the fault coverage by ECC. Consequently, the NN accuracy
loss is signi�cantly prevented, and by voltage underscaling until 0.57V there is

D3.2 Version 1.0 69 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.13. Fault mitigation in the accelerator, shown for VC707.

no e�ect on the NN (without any mitigation, the Vmin is 0.59V). However, due
to those faults that ECC could not correct, i.e., double-bit, multiple-bit, and ECC-
module corrupted faults, there is still some accuracy loss of up to 0.57% at Vcrash.

5.2.5.3. IMM+ECC

Asmentioned earlier, IMMeliminates theHigh-vulnerable BRAMs; however, faults
remaining in other BRAMs can a�ect the NN accuracy, as seen in Figure 5.13. On
the other side, we observed that a vast majority of faults in non-High-vulnerable
BRAMs are single-bit; thus, the built-in ECC can e�ectively cover them. In other
words, we found ECC a useful complementary for IMM technique; i.e., ECC can
cover those faults that are not covered by IMM. The combined IMM+ECC mitiga-
tion technique has a remarkable performance to cover the undervolting faults
and in as shown in Figure 5.13, the Vmin is decreased for 30mV (from 0.59V to
0.56V) and the NN accuracy loss is limited to up to 0.1% at Vcrash= 0.54V on VC707,
i.e., the least-robust FPGA platform that we studied.

5.3. Secure Checkpointing
In the LEGaTo project, we want to achieve both goals security and fault tolerance
at the same time. We protect the con�dentiality and integrity of applications
against strong attackers with privileged accesses using trusted execution en-
vironments (TEEs) such as Intel SGX. This approach enables applications to run
inside enclaves - protectedmemory areas which cannot be accessed even by ad-
versaries with a privileged/root access. In addition, to provide fault tolerance
or robustness of applications, wemake use of checkpoint-basedmechanisms to
ensure the applications can rollback to previous states in the presence of faults.
However, the problem is that a checkpoint of an enclave might leak con�dential
data since it needs to export all data to the outside of an enclave. To handle
this issue, we design and implement a secure checkpointing mechanism that
protects data by ensuring that it is encrypted before sending to the outside and
only an enclave with the correct MrEnclave can receive the data.

Typically, to perform a checkpoint inside an enclave, it requires to support fork()

D3.2 Version 1.0 70 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

inside the enclave. The fork system call clones the calling process/thread with
the result being an identical process image at the point and time of calling the
system call. In order to create a secure fork system call, there are various secu-
rity and performance factors that must thoroughly be considered. These factors
include security, performance, reliability, secrets sharing, and consistency. Se-
curity is the overriding factor and challenged. We need to guarantee that the
state of the forking application will be replicated securely and all other oper-
ations involved must not compromise the SGX security. This requires the state
of the enclave to be encrypted before being transferred. In addition, it must be
authenticated, and its integrity is veri�ed. The reliability of the fork system call
is guaranteed by requiring that the state of parent enclave be consistent prior
to the start of encryption and transfer of forking enclave’s state. Also, the forked
enclave must be in a consistent state at the time of restoration of the state of
the encrypted parent state.

As mentioned above, the transfer of inconsistent state might risk leaking of se-
crets from the enclave. To securely share secrets during enclave creation or
with secure fork child processes, a possible solution is that we establish TLS
connections between enclave processes. However, a wholesome view and con-
sideration of all the requirements to be satis�ed during fork eliminate the TLS
handshake protocol for the exchange of secrets. The problem is that we need
to maintain consistency of state between the parent and the child at the time
the child is restoring the enclave state. The use of a TLS connection implies
the necessity to initialize the receiving enclave to a point where it is capable
of communicating over TLS with the parent enclave. This state used for TLS
communication should be maintained until all necessary communications are
complete, and this violates the consistency requirements we established ear-
lier. This is because the normal initialization scheme of the enclave will use the
memory that overlaps with that of the state of the parent and will be overwritten
while restoring parent state. As a result, the communication channel will break
and lead to failures. Thus, we need a di�erent approach to handle the issue.
Fortunately, Intel SGX provides enclave sealing keys based on the MrEnclave of
an enclave. We use this feature to provide the security guarantee and enable
secrets sharing.

In addition, we need to ensure the secure checkpointing mechanism will not
incur high overhead. While process creation is an expensive timely operation
in comparison to the creation of threads, this operation is further impacted by
the physical process of creation of enclaves. Further, to protect and transfer the
enclave state, it has to be encrypted and transferred to the child enclave. This
also adds signi�cantly to the observable latency in executing the system call. To
take this challenge, we make use of secure shared memory for communication
between parent and child processes instead of using pipes as a state transfer
mechanism used in other frameworks. Thus, our proposed secure fork() mech-
anism achieves much better performance compared to other frameworks2.

6. Runtime Support for Application Development
2https://sconedocs.github.io/

D3.2 Version 1.0 71 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://sconedocs.github.io/

Linter

Trace
generator

Pin VM

Applica�on

OmpSs-2 program
Dependence
informa�on

Nanos

Trace
analyzer

Task primi�ves

Instrument API
Events

Task state
transi�ons

Report

Figure 6.1. Logical �ow of the OmpSs@Linter tool. The Pin VM trace (bottom) is compared
with the actual dependencies observed by Nanos during runtime (top right). High level
debug information (top left) is used to generate human readable feedback.

This chapter describes the tools deployed at runtime to support the develop-
ment of OmpSs applications.

6.1. OmpSs@Linter as a debug tool
We have started the development of a debugging tool to trace the correctness
of the task dependencies. This tool is based on the Pin instrumentation tool
from Intel. Pin captures the memory accesses performed by application tasks,
and our tool compares them with the task-declared input and output memory
regions. Then the tool can detect mismatches among this information, and the
actual memory accesses. It also detects race conditions among tasks. Figure 6.1
shows the logical �ow of the OmpSs@Linter tool.

In the Figure, we can observe how applications compiled with the OmpSs Mer-
curium compiler have the dependence information embedded (top level). Task
creation and management primitives are used by Nanos to implement the task
state transitions (medium level). These are connected to the instrumentation
facilities in order to generate events about task execution and data access hints
provided by the programmer. This information is fed into the trace analyzer.
At the same time (lower level), the binary instructions have been instrumented
with Intel Pin, in such a way that a load/store data accesses are also generated
and fed into the trace analyzer.

The trace analyzer compares both, the events generated about data access hints
from tasks, with the actual data accesses done by tasks. As a result, the tool
detects data races that occur during execution, such as:

• Missing data hints in tasks: tasks that access data not speci�ed in depend
clauses

• Unful�lled/unnecessary data hints: data provided by the depend clauses,
not actually accessed by the task

D3.2 Version 1.0 72 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 6.2. Report generated by OmpSs@linter when missing a data access hint clause.

• Missing taskwait directive: caused by read/write accesses across parent
and child tasks

Current status of OmpSs@Linter implementation

We currently have a partial implementation of the OmpSs@linter tool. It detects
the missing data depend clauses on tasks, and missing taskwait directives.

Figure 6.2 shows the report generated when detecting a missing depend clause,
after the data has been actually accessed by the task.

Figure 6.3 shows the report generated when detecting a missing taskwait due to
a data race between parent and children tasks.

In the context of the LEGaTO project, we are continuing with the development
of this tool.

7. Conclusion
This document describes the �rst version of the LEGaTO toolchain backend (LEGaTO
runtime system). The �rst release consists of several components: an open-
stack middleware, novel backend drivers to execute on the platform FPGAs, an
initial public version of the XiTAO runtime including energy-aware schedulers
and platform-independent locality hints, an improved version of OmpSsFPGA,
a �rst implementation of the OmpSs@Cluster runtime, support for GPU check-
pointing, support for reliable operation of undervolted FPGAs, and novel tools
supporting the development of correct OmpSs applications. Future steps in the
development plan consist of integrating these components into a consolidated
infrastructure. Initial steps have already been performed to enable side-by-
side operation of the Nanos and XiTAO runtimes (some details are shown in
Deliverable D4.2). In addition, we plan to develop back-end drivers to run the

D3.2 Version 1.0 73 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 6.3. Report generated by OmpSs@linter when missing a taskwait.

XiTAO/Nanos runtime systems on the Christmann platform. Furthermore, we
plan to extend the GPU checkpointing mechanism to support also FPGAs, and
enable to control of FPGA undervolting directly from the LEGaTO runtime. We
will also continue the development of the OmpSs@Cluster platform targeting
improved scalability, and further improve the capabilities of the OmpSs@Linter
tool. These achievements will be reported in an internal release of the LEGaTO
runtime scheduled for December 2019, ahead of the �nal release planned for
May 2020.

8. References
[1] Barcelona Supercomputing Center. Performance tools. [online], 2016.

http://www.bsc.es/computer-sciences/performance-tools.

[2] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and
S. Matsuoka. Fti: High performance fault tolerance interface for hybrid sys-
tems. In SC ’11: Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages 1–12, Nov
2011.

[3] Gunnar Billung-Meyer. First release of hardware architecture and �rmware.
Technical Report D2.2, July 2019.

[4] christmann informationstechnik + medien GmbH & Co.KG. Extended
Red�sh API documentation. https://christmann.github.io/recs-red�sh-
api/index.html, 2019. (Online; Last access: 23.07.2019).

[5] Kallia Chronaki, Alejandro Rico, Rosa M. Badia, Eduard Ayguadé, Jesús
Labarta, and Mateo Valero. Criticality-aware dynamic task scheduling for
heterogeneous architectures. In Proceedings of the 29th ACM on Interna-
tional Conference on Supercomputing, ICS ’15, pages 329–338, New York, NY,
USA, 2015. ACM.

D3.2 Version 1.0 74 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

http://www.bsc.es/computer-sciences/performance-tools

[6] Guillaume Colin de Verdière. Hydro benchmark. Technical report.

[7] Distributed Management Task Force. Red�sh Scalable Platforms Manage-
ment API Speci�cation. http://red�sh.dmtf.org/schemas/DSP0266_1.1.html,
2016. (Online; Last access: 23.07.2019).

[8] Distributed Management Task Force. Red�sh Schema Index | Red�sh(TM)
Developer Hub. http://red�sh.dmtf.org/red�sh/schema_index, 2017. (On-
line; Last access: 23.07.2019).

[9] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Mar-
tinell, Xavier Martorell, and Judit Planas. Ompss: a proposal for program-
ming heterogeneous multi-core architectures. Parallel Processing Letters,
21(2):173–193, 2011.

[10] ecma International. Introducing JSON. http://www.json.org/json-en.html.
(Online; Last access: 23.07.2019).

[11] S. K. Godunov. A di�erence scheme for numerical solution of discontinuous
solution of hydrodynamic equations. Math. Sbornik, 47:271–306, 1959.

[12] G. Hu, J. Ma, and B. Huang. High throughput implementation of md5 algo-
rithm on gpu. In Proceedings of the 4th International Conference on Ubiq-
uitous Information Technologies Applications, pages 1–5, Dec 2009.

[13] Intel Corp. Quartus Prime, 2017.

[14] Intel Corporation. Intel Rack Scale Design.
https://www.intel.de/content/www/de/de/architecture-and-
technology/rack-scale-design-overview.html. (Online; Last access:
23.07.2019).

[15] Intel Corporation. Intel Rack Scale Design Pod Manager API Speci�-
cation 2.4. https://www.intel.com/content/www/us/en/architecture-and-
technology/rack-scale-design/podm-api-spec-v2-4.html, 2019. (Online;
Last access: 23.07.2019).

[16] Kai Keller and Leonardo Bautista-Gomez. Application-level di�eren-
tial checkpointing for HPC applications with dynamic datasets. CoRR,
abs/1906.05038, 2019.

[17] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency scal-
ing: The laws of diminishing returns. In Proceedings of the 2010 Interna-
tional Conference on Power Aware Computing and Systems, HotPower’10,
pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[18] Katayoun Neshatpour, Wayne Burleson, Amin Khajeh, and Houman Homay-
oun. Enhancing power, performance, and energy e�ciency in chip multi-
processors exploiting inverse thermal dependence. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 26(4):778–791, 2018.

[19] Stephen Neuendor�er and Fernando Martinez-Vallina. Building
zynq®accelerators with vivado®high level synthesis. In Proceedings
of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’13, pages 1–2, New York, NY, USA, 2013. ACM.

D3.2 Version 1.0 75 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

[20] Eriko Nurvitadhi, David She�eld, Jaewoong Sim, Asit Mishra, Ganesh
Venkatesh, and Debbie Marr. Accelerating binarized neural networks: Com-
parison of fpga, cpu, gpu, and asic. In 2016 International Conference on
Field-Programmable Technology (FPT), pages 77–84. IEEE, 2016.

[21] OData. OData - the Best Way to REST. http://www.odata.org/. (Online; Last
access: 23.07.2019).

[22] Miquel Pericas. Elastic places: an adaptive resource manager for scalable
and portable performance. ACM Transactions on Architecture and Code Op-
timization, 15(2), June 2018.

[23] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Uni�ed, real-time object detection. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun 2016.

[24] R. Rivest. "the md5 message-digest algorithm". Technical report, April 1992.

[25] Florentino Sainz, Sergi Mateo, Vicenç Beltran, José Luis Bosque, Xavier Mar-
torell, and Eduard Ayguadé. Leveraging ompss to exploit hardware acceler-
ators. In 26th IEEE International Symposium on Computer Architecture and
High Performance Computing, SBAC-PAD 2014, Paris, France, October 22-24,
2014, pages 112–119, 2014.

[26] Behzad Salami, Osman S Unsal, and Adrian Cristal Kestelman. Comprehen-
sive evaluation of supply voltage underscaling in fpga on-chip memories.
In 2018 51st Annual IEEE/ACM International SymposiumonMicroarchitecture
(MICRO), pages 724–736. IEEE, 2018.

[27] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition, 2014.

[28] H. Topcuoglu and S. Hariri and. Performance-e�ective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel
and Distributed Systems, 13(3):260–274, March 2002.

[29] Osman Unsal. Architecture de�nition and evaluation plan for legato’s hard-
ware, toolbox and applications. Technical Report SD1, August 2018.

[30] Xilinx, Inc. Vivado High-Level Synthesis, September 2017. http://www.
xilinx.com/hls.

[31] Xilinx, Inc. Zynq ultrascale+ mpsoc overview. [online], 2017.
https://www.xilinx.com/support/documentation/data_
sheets/ds891-zynq-ultrascale-plus-overview.pdf.

D3.2 Version 1.0 76 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

http://www.xilinx.com/hls
http://www.xilinx.com/hls
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf

A. IPMItool command example
Getting available baseboards and power supplies:

ipmitool -I lanplus -H 192.168.0.100 -U admin -P admin sdr list all
Chassis | Dynamic MC @ 20h | ok
Baseboard 1 | Dynamic MC @ 80h | ok
Baseboard 2 | Dynamic MC @ 82h | ok
Baseboard 3 | Dynamic MC @ 84h | ok
Baseboard 4 | Dynamic MC @ 86h | ok
Baseboard 5 | Dynamic MC @ 88h | ok
Baseboard 6 | Dynamic MC @ 8Ah | ok
Powersupply 1 | Dynamic MC @ 50h | ok
Powersupply 2 | Dynamic MC @ 52h | ok

Figure A.1. IPMItool command to list available baseboards and power supplies

Getting available nodes on baseboard 6:

ipmitool -I lanplus -H 192.168.0.100 -U admin -P admin -t 0x8a sdr list all
Baseboard 6 | Dynamic MC @ 8Ah | ok
Node 2 | Dynamic MC @ 72h | ok
Node 3 | Dynamic MC @ 74h | ok
Node 4 | Dynamic MC @ 76h | ok

Figure A.2. IPMItool command to list available nodes on baseboard 6

Getting sensors of node 3 on baseboard 6:

ipmitool -I lanplus -H 192.168.0.100 -U admin -P admin -t 0x74 -T 0x8a sdr list all
+12 V | 11.90 Volts | ok
Node power | 0 Watts | ok
Inlet temp. | 20 degrees C | ok
Outlet temp. | 20 degrees C | ok
Node 3 | Dynamic MC @ 74h | ok

Figure A.3. IPMItool command to get sensors of node 3 on baseboard 6

Getting power status of node 3 on baseboard 6:

ipmitool -I lanplus -H 192.168.0.100 -U admin -P admin -t 0x74 -T 0x8a chassis power
status

Chassis Power is off

Figure A.4. IPMItool command to get power status of node 3 on baseboard 6

Turning node 3 on baseboard 6 on:

ipmitool -I lanplus -H 192.168.0.100 -U admin -P admin -t 0x74 -T 0x8a chassis power on
Chassis Power Control: Up/On

Figure A.5. IPMItool command to turn on node 3 on baseboard 6

D3.2 Version 1.0 77 / 77

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

	Executive Summary
	Introduction
	Middleware and backend drivers
	Redfish API
	Data Model
	Node Composition Process

	OpenStack
	Ironic
	Cyborg
	Valence

	Backend Drivers

	Energy-efficient task-based runtime
	XiTAO
	XiTAO software topologies
	The XiTAO heterogeneous scheduler
	The XiTAO Public Release

	OmpSs
	OmpSs@FPGA
	OmpSs@Cluster

	Runtime support for Fault Tolerance and Security
	GPU Checkpointing
	FTI implementation
	GPU Support for FTI
	FTI Analysis and Optimization
	Evaluation
	Differential Checkpoint Support for GPU data
	Incremental Checkpoint Support for GPU data

	FPGA Unvervolting
	Introduction
	Experimental Methodology
	Effect of Process Variation and Environmental Temperature
	Energy-resilience Trade-off on FPGA-based NN
	Fault Mitigation Techniques

	Secure Checkpointing

	Runtime Support for Application Development
	OmpSs@Linter as a debug tool

	Conclusion
	References
	IPMItool command example

