
D3.3 “FINAL RELEASE OF THE TASK-BASED
RUNTIME”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline 31 May 2020

Dissemination Level Public

Nature Report

Author Miquel Pericàs (CHALMERS)

Contributors Do Le Quoc (TUD), Xavier Martorell (BSC), Leonardo
Bautista-Gomez (BSC), Behzad Salami (BSC), Mustafa
Abduljabbar (CHALMERS), Gunnar Billung-Meyer
(CHR), Omar Shaaban Ibrahim (BSC), Jimmy Aguilar
Mena (BSC), Paul Carpenter (BSC), Tobias Becker
(MAX)

Reviewers Micha vor dem Berge (CHR)

The LEGaTO project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 780681.

D3.3 Version 1.0 1 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Ref. Ares(2020)2824604 - 01/06/2020

https://legato-project.eu/

Change Log

Version Description of Change

1239 2020-04-01, File created

1245 2020-04-12, Deliverable outline

1276 2020-04-28, Middleware

1280 2020-05-03, FPGA Undervolting

1292 2020-05-04, XiTAO energy-aware scheduler, topologies,
pipeline parallelism and extrae support

1306 2020-05-08, Trusted Key Management

1312 2020-05-11, FPGA Checkpointing

1313 2020-05-11, OmpSs@Cluster

1317 2020-05-12, GPU Checkpointing

1324 2020-05-13, OmpS@FPGA, OmpSs@linter, backend drivers

1332 2020-05-18, Conclusion

1343 2020-05-21, CHR reviews applied

1364 2020-05-28, SLiC API

1367 2020-05-31, Release Candidate RC1

This log reflects actual revision numbers from SVN (version control software used).

D3.3 Version 1.0 2 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Index

1 Executive Summary . 8

2 Introduction . 9

3 Middleware and backend drivers . 11
3.1 Redfish API . 11
3.2 Web GUI . 13
3.3 RECS Platform Drivers . 17
3.4 SLiC API . 18

4 Energy-e�cient task-based runtime . 18
4.1 XiTAO . 18

4.1.1 XiTAO software topologies . 18
4.1.2 The XiTAO heterogeneous scheduler 20
4.1.3 Support for Pipeline Parallelism 25

4.2 OmpSs . 28
4.2.1 OmpSs@FPGA . 28
4.2.2 OmpSs@Cluster . 33

5 Runtime support for Fault Tolerance and Security 43
5.1 GPU Checkpointing . 43

5.1.1 Code Release . 43
5.1.2 Paper Publication . 44

5.2 FPGA Checkpointing . 44
5.3 FPGA Unvervolting for CNN Accelerators 45

5.3.1 Introduction . 45
5.3.2 Experimental Results: Voltage Behavior Analysis 47
5.3.3 Power-reliability Trade-o� for Reduced-voltage FPGA-based

CNN Accelerators . 48
5.3.4 Frequency Underscaling . 49

5.4 Trusted Key Management . 50
5.4.1 Approach: A Trusted Management Service 51
5.4.2 Evaluation: Micro-benchmarks 55
5.4.3 Evaluation: Macro-benchmarks 57

6 Runtime Support for Application Development 58
6.1 OmpSs@Linter as a debug tool . 58

6.1.1 OmpSs Linter . 59
6.1.2 Evaluation: Benchmarks . 63
6.1.3 Evaluation: Results . 65

6.2 Extrae support in XiTAO . 68

D3.3 Version 1.0 3 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

7 Conclusion . 68

8 References . 69

D3.3 Version 1.0 4 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

List of Figures

1.1 The LEGaTO stack and relation of components with LEGaTO goals . 9

3.1 Redfish API output of chassis fan monitoring data 12
3.2 Redfish API output of baseboard power and current monitoring data 12
3.3 RECS|Box server Web GUI showing the management overview . . . 13
3.4 Node Composition Wizard - General preferences view 14
3.5 Node Composition Wizard – Node selection view 14
3.6 Node Composition Wizard – PCIe device selection view 14
3.7 Node Composition Wizard – Connection sets view 15
3.8 Connection Wizard – Endpoint A selection view 15
3.9 Connection Wizard – Endpoint B selection view 16
3.10 Connection Wizard – Connection settings view 16
3.11 Node Composition Wizard – Connection sets view (complete) . . . 17

4.1 Virtual topology mapping of Jacobi2D and Copy2D kernels 19
4.2 Adding an extra layer for NUMA-aware data placement 20
4.3 A sample view of the hardware places uncovered by the software

topology address . 20
4.4 Energy e�cient task scheduler runtime overview. 21
4.5 CPU power consumption of compute-bound microbenchmark on

two clusters in MAX and MIN frequencies. 22
4.6 The energy consumption comparison results of three benchmarks.

The x axis includes frequency combinations and task DAG paral-
lelism. MIN&MAX means Denver is set to MIN and A57 is set to MAX,
and so on. 25

4.7 Step-by-step depiction of parallel pipeline stages in XiTAO runtime 26
4.8 Execution time of 15 input units with di�erent resource widths

given to each pipeline stage. 28
4.9 OmpSs@FPGA Matrix Multiply benchmark 30
4.10 OmpSs compilation env. with FPGA support 30
4.11 High-level representation of the Nanos++ environment 31
4.12 Evaluation of matrix multiplication on OmpSs@FPGA. 33
4.13 Example of an OmpSs task with input dependencies over A and B

arrays, and output dependency over C array. 35
4.14 Memory model of Nanos6. The address space is divided between

local and distributed memory. The local memory is further divided
in equal chunks between the cluster nodes. Each cluster node al-
locates local memory from its personal chunk of the local memory
space. 36

4.15 Nanos 6 task o�oading model . 37

D3.3 Version 1.0 5 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

4.16 Compressed Sparse Row (CSR) sparse matrix format representa-
tion. In (a) a 2D dense matrix, and (b) is the CSR representation of
(a). 39

4.17 Scalar Compressed Sparse Row (CSR) Sparse Matrix Vector Multi-
plication (SpMV) Routine. 40

4.18 OmpSs-2 Compressed Sparse Row (CSR) Sparse Matrix Vector Mul-
tiplication (SpMV) of the scalar SpMV code from Figure 4.17 41

4.19 CSR-SpMV MPI vs. OmpSs-2 strong scalability of 24k x 24k sparse
matrix on MareNostrum 4. 41

4.20 CSR-SpMV MPI (of 24k x 24k matrix) execution trace showing com-
munications between threads (vertical yellow lines) and execution
flow of concurrent threads shown by the horizontal blue lines. . . 42

4.21 CSR SpMV OmpSs-2 execution trace of 24k x 24k sparse matrix on
two nodes. (a) showing trace with no communication lines. (b)
with communication line. 42

4.22 Example of an OmpSs task that must execute on node 1. 43

5.1 Voltage regions with a slight workload-to-workload variation (av-
eraged across three hardware platforms). 48

5.3 E�ect of reduced supply voltage on the accuracy of CNN workloads
(separately for three hardware platforms). 49

5.2 Power-e�ciency (GOPs/W) improvement via undervolting with
INT8 quantized and without pruning at ambient temperature (av-
eraged across three hardware platforms). 49

5.4 Overview of security policies. 52
5.5 Principle of managed PALAEMON deployment and operation. . . . 52
5.6 Attestation and configuration latencies: even when located close

to Intel’s IAS server, attestation with IAS takes about an order of
magnitude longer than with PALAEMON. 56

5.7 Startup latency and throughput using attestation variants. 56
5.8 Left: latency of PALAEMON tag reads and updates. Right: reading

overhead for a file with 1 or 10 secrets normalized by the time to
read a plain file. 57

5.9 Latency to retrieve multiple secrets (up to 100) from a PALAEMON
service deployed locally, from the same data centre (DC) or from
an instance running on a di�erent continent. 57

5.10 (a) Throughput/latency for GET requests on 67kB files, in five vari-
ants of nginx. ZooKeeper: read (b) and write (c) operations. (d)
MariaDB with TPC-C benchmark (d): increasing bu�er pool helps
native more than EMU or hardware. 58

6.1 OmpSs@Linter environment . 60
6.2 Examples of use of the lint directive 62
6.3 Example of use of the verified clause 63
6.4 Evaluation of the overhead (slowdown in the execution time) for

the benchmarks executed under OmpSs@Linter 67
6.5 VGG traces for two events. 68

D3.3 Version 1.0 6 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

List of Tables

4.1 Power consumption profile of compute-bound tasks 23
4.2 Summary of evaluated schedulers. 24

5.1 Evaluation of frequency underscaling to prevent CNN accuracy loss
in the critical voltage region, at ambient temperature (averaged
across three hardware platforms). 50

D3.3 Version 1.0 7 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1. Executive Summary
This report describes the final release of the LEGaTO toolchain backend. It cor-
responds to the backend state as reached at M30. The report is organized in four
sections covering:

1. The middleware and drivers to run on the LEGaTO hardware.

2. The energy-e�cient runtime, with a focus on the two main components
OmpSs/Nanos and XiTAO.

3. The runtime support for fault tolerance and security, focusing on fault tol-
erance for GPU/FPGA (via checkpointing), FPGA (undervolting reliability),
and CPU security (trusted key management).

4. The runtime tools that have been introduced to support the development
of applications written using with the LEGaTO toolchain.

This deliverable D3.3 extends and supersedes deliverable D3.2 "First release of
the task-based runtime". To avoid overlap between the two documents, we
choose to highlight only those components that are novel or have been consid-
erably updated since D3.2. Overall, this deliverable covers work that has been
done during the past 10 months, from M20 until M30. Throughout the deliver-
able, we attempt to highlight how this "final release" deliverable di�ers from
D3.2 (the "first release").

This final runtime release includes many highlights. Dynamic node composition
is now supported via the Redfish API and web GUI of the RECS|Box management
software. At the runtime layer, the release includes a more advanced implemen-
tation of the XiTAO runtime, featuring (1) performance, interference and energy-
aware scheduling, (2) virtual topologies for locality-aware scheduling, and (3)
novel support for pipeline parallelism. The release also features advanced sup-
port for executing OmpSs applications on cluster hardware (OmpSs@Cluster),
and improvements to OmpSs@FPGA targeting novel FPGA hardware, such as
support for scalar operands, and instrumentation for performance analysis. To
support program development, the OmpSs@Linter tool has been considerably
extended, and the XiTAO runtime is now integrated with the Extrae/Paraver toolchain
from BSC. Finally, this final release also features support for advanced fault tol-
erance in the form of high performance GPU/FPGA checkpointing, support for
reliable and energy e�cient FPGA undervolting, and trusted key management.

The various components of the LEGaTO backend and how they related to the
major four goals of LEGaTO (energy e�ciency, fault tolerance, security, and pro-
grammability) are shown in Figure 1.1.

Several components developed in the LEGaTO work package 3 "Tool-Chain Back-
End" tasks (mainly in T3.4 "Energy-e�cient Task-based Runtime") are tightly cou-
pled with the toolchain front-end developed in work package 4. The description
of the runtime components developed by Maxeler (MaxJ), Technion (DFiant) and
University of Neuchatel (HEATS) is deferred to Deliverable D4.3 ("Final release

D3.3 Version 1.0 8 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

LEGaTO
aspects

Smart Home

Secure IOT Gateway

WP5 USE CASES

PROGRAMMING
MODEL

COMPILER
& HLS

RUNTIME

MIDDLEWARE

HARDWARE

WP4

WP3

WP2

Smart City

Sequential Task-Based OmpSs programs

C and HLS Source Code

C Source Code

Native compiler and Linker

CPU/GPU Binaries Bitstream

Deployment, Monitoring, Control

FPGA Synthesis

RTL

Compilation

Runtime

Microserver

Hardware

Platform

XiTAO Front-End

XiTAO Runtime

SCONE Compiler Mercurium MaxCompiler AutoAit DFiant HLS

 OmpSs Eclipse IDE Plug-In

Machine Learning

CPU GPU FPGA/DFE

Healthcare

SecurityProgrammabilityEnergy- Efficiency Fault - tolerance

SCONE Runtime HEATSNanos Runtime Fault-Tolerance
Interface

OpenStack and RECS_Master Middleware

Redfish API for Node Composition, Monitoring and Control

Figure 1.1. The LEGaTO stack and relation of components with LEGaTO goals

of energy-e�cient, secure, resilient task-based programming model and com-
piler extensions, including FPGA toolchain"). D4.3 describes these components
together with the rest of the front-end toolchain infrastructure.

2. Introduction
Optimizing application execution to utilize heterogeneous systems composed of
asymmetric cores, FPGAs and GPUs is instrumental to reach the levels of energy
e�ciency demanded by next generation IoT, Edge and HPC applications. Over
the past 2.5 years, the LEGaTO project has been building a toolchain to map
applications written in the OmpSs language onto two heterogeneous platforms
provided by Christmann and Maxeler. This deliverable (D3.3) describes the fi-
nal LEGaTO release of the runtime system that has been developed to support
LEGaTO applications via intelligent execution-time mechanisms. The main goal
of the runtime stack developed is energy e�ciency, with additional goals being
productivity, fault tolerance and security.

This deliverable extends and supersedes Deliverable D3.2 which was submitted
at M20. The focus of the deliverable is on novel and/or heavily updated compo-
nents since D3.2. The application development and compilation aspects of the
LEGaTO toolchain are covered in the sibling deliverable D4.3.

In order to achieve the targeted improvement of 10× energy reduction, LEGaTO’s
runtime work package (WP3) has been researching scheduling and locality-awareness
techniques, the o�oading of computations to FPGAs, and the undervolting of
FPGAs. The main goal of the runtime is to make e�cient use of the underlying

D3.3 Version 1.0 9 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

hardware. This requires a good understanding of the available hardware and
its configuration. The RECS hardware developed by Christmann and UBI can be
statically configured, and dynamically queried and and configured by the run-
time via the Redfish API and an optional OpenStack layer. The Redfish API is
described in Section 3.1, along with the Web GUI designed to configure the RECS
hardware which is described in 3.2. The work to target the RECS platform from
the runtime layer is described in Section 3.3. On the other hand, the specific
components to target the Maxeler DFE platform are described in Section 3.4.

In modern platforms, performance and energy-e�ciency are highly dependent
on data movement. To this end, we are developing novel APIs to specify application-
level task locality in a platform-independent way. The XiTAO runtime supports
a mechanism called software topologies which allows to map tasks on a virtual
topology which is translated to the hardware topology at runtime. The opera-
tion of this scheme is described in Section 4.1.1 with a focus on virtual places
mapping, a novel feature introduced in this release.

Several scheduling techniques have been researched in the context of the ex-
perimental XiTAO runtime. XiTAO decouples task parallelism from the amount
of resources by specifying a resource container. Runtime-guided allocation of
resource containers is a major target of our research, enabling the user to target
performance-aware or energy-aware schedules. Our research on how to exploit
moldability and task criticality to achieve reduced energy consumption is de-
scribed in Section 4.1.2. We also describe a novel implementation of pipeline
parallelism within XiTAO in Section 4.1.3.

FPGAs are becoming popular in HPC and in the datacenter as a way to accel-
erate applications with high energy e�ciency. In LEGaTO, we have researched
how to support FPGAs at runtime via the OmpSs@FPGA infrastructure which
enables seamless o�oading of FPGA bitstreams to FPGA accelerators, all inte-
grated within the OmpSs compilation flow and Nanos runtime. Our research on
OmpSs@FPGA is described in Section 4.2.1.

Scalability is another major goal of LEGaTO in order to support larger applica-
tions and systems. To achieve improved scalability, we have researched how to
execute OmpSs applications on multiple nodes with distributed memory. This
approach, called OmpSs@Cluster, has been released as part of OmpSs-21. The
technologies required to execute OmpSs applications on large-scale clusters are
described in Section 4.2.2.

One challenge associated with scalability is reliability. Executing an application
on a large collection of nodes decreases its Mean Time Before Failure (MTBF).
Checkpointing is a common technique to increase reliability by storing applica-
tion snapshots to long term storage (e.g. disk). Previously, checkpointing has
been extensively researched in the context of CPUs. The LEGaTO project has
researched how to extend this support to heterogeneous architectures includ-
ing FPGA and GPU. Section 5.1 details our work on automatically checkpointing
applications running on GPUs using the FTI checkpointing library. This D3.3 de-
liverable also includes a description of the novel FPGA checkpointing support in
Section 5.2

1https://pm.bsc.es/ompss-2

D3.3 Version 1.0 10 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://pm.bsc.es/ompss-2

Further energy-e�ciency with FPGAs can be achieved by using undervolting. This
technique reduces the voltage of FPGA components to achieve a more energy-
e�cient operation mode. However, too aggressive undervolting can lead to er-
rors. How much to undervolt and how to correct errors are two goals that have
been researched in LEGaTO. The results of this research are described in Sec-
tion 5.3, with a focus on accelerators for convolutional neural networks (CNN).

Ensuring integrity and privacy is also an important goal of LEGaTO. Via LEGaTO’s
PALAEMON framwork it is now possible to transfer secrets in a trusted manner to
applications running inside of enclaves such as Intel SGX. This work is described
in Section 5.4.

Finally, we are also developing runtime components to support the program-
ming of LEGaTO applications. The main focus is the tool OmpSs@Linter whose
goal is to detect potential bugs in the specification of OmpSs task dependen-
cies and missing synchronization between OmpSs parent and child tasks. This
development is described in Section 6.1. This deliverable concludes with a de-
scription of novel performance debugging support integrated in XiTAO via the
extrae/paraver toolchain 6.2.

3. Middleware and backend drivers
The hardware utilized in the LEGaTO project is of a very special kind. It fea-
tures the usage of heterogeneous computing resources such as x86, ARM, GPUs,
FPGAs and FPGA-based Dataflow Engines (DFEs) and allows to compose those re-
sources statically and dynamically. This characteristic, called node composition,
is made possible by the flexible high-speed low-latency communication infras-
tructure. It can be configured to connect resources with each other and can also
be reconfigured during runtime to adapt to specific characteristics of computing
algorithms. In addition to that, the hardware allows the dynamic distribution of
PCIe functions among the connected resources. Further details and examples of
node composition can be found in D2.2 [7].

The middleware layer of the LEGaTO software stack is developed within this
project to handle those complex characteristics of the underlying hardware. It
enables the upper software layers to interact with it and make use of its flexi-
bility to enhance the e�ciency of computation algorithms.

As already stated in chapter 3 of D3.2 [36], the focus of the middleware has been
shifted from OpenStack development to the extension of the firmware, Redfish
API and Web GUI embedded in the RECS|Box server itself. Those software parts
were enhanced to take over the management tasks of OpenStack to allow easy
and full-featured (re-)configuration of the underlying hardware, without Open-
Stack. Anyhow, the static part of the node composition process is still supported
with OpenStack. This part was already described in section 3.2 in D3.2 [36].

3.1. Redfish API
The hardware inventory of the RECS|Box can be accessed through the Redfish
API, which was described in D3.2 [36]. Its documentation can be accessed online
at Github [12]. This RESTful API is implemented in the embedded RECS_Master

D3.3 Version 1.0 11 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

management software of the RECS|Box. The API makes the capabilities of the
underlying hardware visible and one can navigate through it to gather all re-
quired information about the hardware model like e.g. microservers and PCIe
extension cards.

Because it is an essential feature to have a picture of the overall system health
status, the API was enhanced within the LEGaTO project to now also contain
detailed monitoring data regarding the thermal and power state of the hardware
components. The figures 3.1 and 3.2 in this section show parts of the JSON output
after querying the Redfish API.

Figure 3.1. Redfish API output of chassis fan monitoring data

(a) Infrastructure power data (b) Current data

Figure 3.2. Redfish API output of baseboard power and current monitoring data

Furthermore, the RECS_Master management software was enhanced to expose
more detailed information about PCIe functions through the Redfish API. This
includes technical information such as bus, domain and instance numbers as
well as vendor and device identifiers. Those identifiers, commonly known as VID

D3.3 Version 1.0 12 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

and DID, are then resolved to their names within the RECS_Master to administer
additional human readable information to the user.

3.2. Web GUI
The RECS_Master management software provides not only the Redfish API but
also a comprehensive Web GUI to manage the hardware. As part of the RECS|Box
server management system, it was developed in previous EU-funded projects
and completely reworked and enhanced within the LEGaTO project.

Figure 3.3. RECS|Box server Web GUI showing the management overview

Figure 3.3 shows a screenshot of the management overview of a RECS|Box server
to get a picture of its capabilities.

A major progression of the Web GUI within LEGaTO was its extension to support
the complete node composition process in order to have this important feature
embedded within the RECS|Box system without the need for an additional Open-
Stack installation. Now all resources and connections between them as well as
the utilization of PCIe functions can be configured easily by the user through
this Web GUI. The following figures show an example node composition process
with the "Node Composition Wizard" of the RECS|Box Web GUI.

After giving the new composed node a name and description in the first step
(figure 3.4), the user gets a detailed list of all available microserver resources
within the RECS|Box cluster server. He can now select nodes, that will be part of
the composition (figure 3.5). In this example, two Intel Stratix 10 SX 2800 FPGAs
from baseboard 1 and an Intel Xeon microserver from baseboard 5 are selected.

In the next step (figure 3.6) an NVIDIA Tesla V100 is selected from the available
PCIe extension cards to also be part of the composed node to be created. Like
the Intel Xeon node, it is connected to baseboard 5 and provides a physical and

D3.3 Version 1.0 13 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 3.4. Node Composition Wizard - General preferences view

Figure 3.5. Node Composition Wizard – Node selection view

Figure 3.6. Node Composition Wizard – PCIe device selection view

a virtual PCIe function.

After that, all physical resources of the composed node to be created are se-
lected. In the following, they will be connected and PCIe functions will be as-
signed.

An essential part of dynamic node composition is the reconfiguration of the
physical high-speed low-latency connections and PCIe functions during runtime.
To achieve this, one can now specify certain independent sets of connections
between the physical resources of the composed node. In this example (fig-
ure 3.7), three connection sets named "initialisation", "algorithm 1st phase" and
"algorithm 2nd phase" are defined by the user within this wizard. Only one of
these sets can be active at a time and each one consists of multiple connec-

D3.3 Version 1.0 14 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 3.7. Node Composition Wizard – Connection sets view

tions between the resources selected before. During runtime, the active set can
be changed by calling the Redfish API (figure 3.9 in D3.2 [36]). This then results
in an immediate reconfiguration of the physical high-speed low-latency infras-
trcture of the RECS|Box. If one of the connection endpoints is a port of a PCIe
switch, a connection can also define one or more PCIe functions, which will be
shown in the following.

In this case (figure 3.7), one connection with 8 lanes will be established between
the NVIDIA Tesla V100 extension card and an embedded PCIe switch port. By
doing this, the switch can then extend the single-root (SR-IOV) to multi-root vir-
tualisation (MR-IOV) and thus, expand the virtual function of the GPU extension
card to be used concurrently by multiple resources connected to the switch.

Figure 3.8. Connection Wizard – Endpoint A selection view

Now, further connections can be added to the connection set, using the virtual
function provided by the NVIDIA Tesla V100 and distributed by the PCIe switch.
For that matter, the "Connection Wizard" can be started to define such connec-
tion. In the first step of this wizard, the first endpoint of the connection has to
be specified. In this example (figure 3.8), one of the FPGA resources is selected.

In the next step (figure 3.9), the user has to define the second endpoint of the
connection. This can either be one of the other resources within the composed
node or a port of PCIe switch like in our case.

D3.3 Version 1.0 15 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 3.9. Connection Wizard – Endpoint B selection view

Figure 3.10. Connection Wizard – Connection settings view

By connecting the FPGA to the switch port, the number of lanes has to be speci-
fied this connection will consist of. In addition to that, all virtual PCIe functions
available at the switch are listed and can be chosen from. In our case, the vir-
tual function of the PCIe device is shown and selected. It will be added to the
PCIe switch port when the connection is physically configured by activating the
connection set, this connection belongs to.

After repeating this wizard with the other FPGA resource of the composed node,
the connection set "algorithm 1st phase" is complete, now containing all three
specified connections, which can be seen in figure 3.11.

If all connection sets are defined, the "Node Composition Wizard" can be fin-
ished. This triggers the allocation and assembling of the composed node. The
underlying hardware is then configured according to the connection set marked
as active (e.g. "initialisation"). After the active connection set is then switched
to "algorithm 1st phase", both FPGAs will be able to concurrently use the vir-
tual PCIe function provided by the NVIDIA Tesla V100 through the PCIe switch.
When the algorithm reaches a certain point, the runtime can trigger the last con-
nection set "algorithm 2nd phase" to have a new communication topology for a

D3.3 Version 1.0 16 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 3.11. Node Composition Wizard – Connection sets view (complete)

more e�cient computation in that phase.

After the computation has finished, the composed node can be deleted directly
from within the runtime by calling the Redfish API or by the user utilizing the
Web GUI. This deletion will roll back all configurations and frees the assigned
resources. S

3.3. RECS Platform Drivers
In order to use the described node composition features from LEGaTO’s runtime
layer, we are developing the runtime system support for GPUs and FPGAs. For
GPUs, CUDA and OpenCL already include libraries with the necessary low level
services for OmpSs. On the Xilinx FPGAs, we provide the xdma and xtasks li-
braries that work on top of the vendor driver in Linux. We currently interoperate
with the Xilinx and Alpha-Data drivers on the various Xilinx integrated and dis-
crete FPGAs supported by the LEGaTO runtime (Zynq 7000, Zynq U+, and Virtex-7).

Since mid-2019, we have improved the quality of the information published by
the bitstreams generated, and accessible on the Linux devices directory/dev/ompss_fpga.
This is a summary of the information:

• bit_info/wrapper_version, includes the version of the wrapper code
genersted for this bitstream. It is used to determine if the software side
complies with the proper arguments and protocol to connect with the IP
core.

• bit_info/ait_version, indicates that the new release of the AIT (Ac-
celerator Integration Tool) was used to generate the bitstream instead of
the former autoVivado.

• bit_info/ait_call, includes the command invocation and arguments

D3.3 Version 1.0 17 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

provided to AIT. As an example, the call used in the matrix multiplication
example is:
a i t . pyc −−name=matmul −−board= zcu102 −c=300 −−hwruntime=som
−−interconnect ion_opt =performance −−to_step = bitstream
−−wrapper_version =6

• bit_info/xtasks, includes the information on the generation and invo-
cation of the IP cores. E.g., hash_key #instances name frequency

With the bitstream information available, the xtasks library checks the compat-
ibility of the application binary generated, with the bitstream configured in the
FPGA, and the it has the features required by the application.

We have also fixed an issue related to loading and unloading the kernel module
several times, that was corrupting the Linux internal data structures.

3.4. SLiC API

Maxeler DFEs are accessed through the Simple Live CPU interface (SLiC) API and
the MaxelerOS runtime. The SLiC API provides a shared library for host code in-
tegration. It provides the relevant function calls to interact with a DFE, such as
configuring the device, setting registers, accessing memory, and streaming data.
MaxelerOS provides the runtime components that include a daemon to interface
with DFEs, low-level devices drivers and utilities for managing and monitoring
DFEs. Both SLiC and MaxelerOS are components that are part of Maxeler’s com-
mercial toolset and they were already described in detail in Deliverable D2.1 [47].

Traditionally, Maxeler has targeted its own in-house developed DFEs with its
toolset. During the LEGaTO project, Maxeler extended support to also include Xil-
inx Alveo U200 and U250 data center cards as compiler targets that are system-
level compatible to Maxeler MAX5 DFEs. The SLiC API and MaxelerOS runtime
were extended accordingly to support these devices. This expands the number
of FPGA devices that are supported through the LEGaTO toolstack.

4. Energy-e�cient task-based runtime
This chapter describes our e�orts to develop runtime technologies targeting
scalability and high energy e�ciency.

4.1. XiTAO
XiTAO is a lightweight layer that provides a task-parallel and data-parallel in-
terface using modern C++ features. The design goals of XiTAO are to be low-
overhead and to serve as a development platform for testing scheduling and
resource management algorithms.

4.1.1. XiTAO software topologies

Software topologies is a mechanism implemented in XiTAO to achieve strict locality-
aware scheduling of tasks in a portable manner. Since the execution model of
XiTAO DAGs is compile-once run-anywhere, any information for locality aware

D3.3 Version 1.0 18 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

scheduling needs to be generic and interpretable at runtime. At the task level,
XiTAO implements a concept called "virtual topologies" which is converted at
runtime into actual thread mappings to enforce locality aware scheduling. This
mapping is strict in the sense that tasks that have a locality specification are
no longer subject to load balancing. It is hence important to only use the local-
ity feature when strictly necessary to avoid excessive communication. We will
explore more relaxed schemes in the future.

XiTAO’s virtual topologies consist of regular N-dimensional cartesian topologies.
Figure 4.1 shows an example with virtual mappings of the jacobi2D and copy2D
kernels as implemented in the Heat benchmark that is part of the sample bench-
marks available in the public XiTAO git repository. In this example, each task in
the DAG of task assembly objects (TAO-DAG) is given an address (called a soft-
ware topology address) in a virtual topology consisting of a one-dimensional
topology (a line between 0 and 1). Generally, the idea is that by measuring the
virtual distance between two XiTAO tasks, the runtime obtains approximate in-
formation on the communication relationship between the two tasks. If two
tasks have the same address, this is understood by the runtime as meaning the
highest amount of data reuse between the two tasks. As a consequence, the Xi-
TAO runtime will attempt to schedule the two tasks on the same set of cores. This
then optimistically results in data reuse via the caches of the cores. In the cur-
rent state of XiTAO, we have implemented one-dimensional virtual topologies.
As tested with the Heat di�usion simulation benchmark, this scheme can have a
very positive impact on performance by avoiding unnecessary communication.

Figure 4.1. Virtual topology mapping of Jacobi2D and Copy2D kernels

XiTAO’s virtual topologies can also be used to support NUMA-aware data place-
ment. This is achieved by introducing an extra layer of tasks that takes care
of data placement. Using virtual topologies, this layer of tasks can be sched-
uled to the same cores and NUMA nodes as the dependent tasks. This, com-
bined with the default first touch allocation implemented in the Linux kernel1,
achieves locality-aware data placement. The overall idea is shown in Figure 4.2.
The first touch policy specifies that the physical memory page is allocated on
the node that first writes to the data. This is important since it means that data

1https://queue.acm.org/detail.cfm?id=2513149

D3.3 Version 1.0 19 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://queue.acm.org/detail.cfm?id=2513149

allocation (e.g. via malloc()) is not enough to ensure correct data placement,
but in fact data placement happens when data is written to for the first time.
Hence, as shown in Figure 4.2, initializing the data will take care of the proper
data placement.

4.1.1.1. XiTAO Virtual Places Mapping

The granularity of the software topology mapping is managed by XiTAO at run-
time, so rather than mapping to a single core, the runtime may decide to mold
the task on more than one core within the specified locality. To aid this map-
ping, the hardware layout may be optionally passed to the runtime. Figure 4.3
shows a possible way to express an dual socket 8-core system. Width 4 has two
place options: C0-C3 and C4-7. Such places are also candidates for STA mapping
if the STA lies in either range. The runtime scheduler is designed to look for the
optimal place for a task depending on an online performance model discussed
in Section 4.1.2

i

i+1

local memories

2D stencil
TAO-DAG

(2,1) (2,2) (2,3) (2,4)

(2,1) (2,2) (2,3) (2,4)

iteration

placement init() init() init() init()

allocation alloc() alloc() alloc() alloc()

NUMA node 0 NUMA node 1

Figure 4.2. Adding an extra layer for NUMA-aware data placement

C0 C1 C2 C3 C4 C5 C6 C7

L0 L4

L0 L2 L4 L6

L0 L1 L2 L3 L4 L5 L6 L7

Wid = 4

Wid = 2

Wid = 1

Figure 4.3. A sample view of the hardware places uncovered by the software topology
address

4.1.2. The XiTAO heterogeneous scheduler

Modern multicore systems feature performance asymmetric cores to enable en-
ergy e�cient execution of a variety of applications. Dynamic scheduling, such as
random work stealing scheduler (RWSS), is widely used by many task-based run-
time systems as the underlying scheduling strategy. RWSS greedily assigns tasks
to any available resources and employs work stealing to ensure load balancing.
On asymmetric platforms with more general DAGs, applying RWSS can result in
suboptimal performance and ine�cient utilization of resources, for example, by
poorly mapping non-critical tasks to the fastest resources and vice-versa.

D3.3 Version 1.0 20 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.4. Energy e�cient task scheduler runtime overview.

Some recent proposals have specifically targeted the issue of energy e�cient
task scheduling. However, these works su�er from several shortcomings. Firstly,
they do not consider per-task power characteristics, where we show that the
choice of core(s) to execute a task in an energy e�cient manner is primarily af-
fected by the kernel type, for example, compute-bound, memory-bound, cache-
sensitive, etc. Our analysis also shows that runtime idle energy due to run-
ning the work stealing loop is significant, especially when the parallel slackness
is low. Secondly, these works cannot handle intra-task (or nested) parallelism
but only inter-task parallelism and instead only allow a task to run on a single
core. Thirdly, these proposals rely on the assumption of fine-grained per-core
DVFS control for achieving energy e�ciency. However, most systems only feature
cluster-level DVFS where DVFS settings can only be controlled for all the cores
in the cluster but not individually. Another issue is the fact that modern power
management monitoring and control introduces significant timing overheads. It
was shown that DVFS transition time can last from tens of microseconds to over
a millisecond [11]. However, with fine-grained tasks sized of microseconds level,
the assumption of fine-grained per-task DVFS scheduling is unrealistic any more.

In LEGaTO, we propose an energy e�cient task scheduler that reduces energy
consumption by determining energy aware mappings for all tasks, which ad-
dresses the problem of scheduling of task-DAGs on asymmetric systems where
frequencies are either fixed or managed by the OS power governors.

4.1.2.1. Energy E�cient Scheduler Overview

The task scheduler features several components: power characterization pro-
files, a performance tracer, a global parallelism tracer and a local task map-
ping algorithm. Figure 4.4 highlights the essential components in the proposed
scheduler. These components perform the following functions: The power char-
acterization of the platform allows the scheduler to understand CPU power con-
sumption trends with respect to type of tasks, number/type of cores and fre-
quencies. The performance tracer consistently tracks the history of task execu-
tion time on di�erent cores types and counts and allows to predict the perfor-
mance of future tasks given a set of resources, which is the performance trace
table described in section 4.1.2 in deliveriable 3.2. The parallelism tracer gives
the information of real-time parallel slackness of cores, which allows the algo-
rithm to attribute system idle power and dynamic power to running tasks, even
when some cores in the system are idle (not running any tasks). Finally, the lo-

D3.3 Version 1.0 21 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

cal task mapping algorithm takes the system idle energy and per-task dynamic
energy into account to fulfill the energy prediction for each task.

Power Characterization Profiles. The goal of this component is to estimate power
consumption when mapping a task to an execution place. Here, we adopt o�ine
characterization method because of the limitation of the power sensor. We con-
sider tasks to be broadly grouped into one of the following categories: compute-
bound, memory-bound and cache-sensitive. For characterization, we utilize one
micro-benchmark as a representative for each category. We construct a simple
power model that can provide an estimate for the power consumption of a task
and is a function of execution place (leader core (LC), resource width (RW)) and
task category (TC). The total power consumption (Ptot) of a task when running at
a specific frequency (F) is given by Equation 4.1:

Ptot(LC,RW, TC, F) = Pidl + (Pone + Poth · (RW − 1)) (4.1)

Here Pidl represents system idle power, which CPUs consume even when no ap-
plication is running. Pone represents dynamic power consumption when using
only one core in a cluster (resource width of one). Poth represents the increase
in dynamic power consumption when more than one core in the cluster is used.
We carry out o�ine characterization on NVIDIA TX2 using two frequency levels:
MAX (2,035,200 Hz) and MIN (345,600 Hz), although it can be easily extended to
a broad range of other frequencies.

For example, Figure 4.5 shows the CPU power measurement when running the
compute-bound microbenchmark with di�erent number of cores and frequen-
cies. When turning on all six cores while keeping them in idle state, the system
idle power is found to be approximately 228 mW. We turn o� the Denver cluster
to measure Pidl of the A57 cluster, and observe it to be 152 mW. The Tegra Linux
kernel does not permit powering o� core zero (A57 in this case). Therefore, we
can only turn o� the Denver cluster. We infer that the idle power consumption of
the Denver cluster is 76 mW (228 mW-152 mW). It is obvious that irrespective of
the frequency, CPU dynamic power consumption linearly increases when addi-
tional cores from same cluster are used. Based on the measurements shown in
Figure 4.5, we obtain the CPU power consumption profile for the compute-bound
task category as shown in Table 4.1.

 0

 1000

 2000

 3000

 4000

 5000

Idle 1 2 3 4

C
P

U
 P

o
w

e
r

[m
W

]

Number of Cores

A57228

1217

1976

2812

3644

Denver
228

2275

4320

(a) MAX

 0

 100

 200

 300

 400

 500

 600

 700

Idle 1 2 3 4

C
P

U
 P

o
w

e
r

[m
W

]

Number of Cores

A57

228

304

380

456

532

Denver

228

456

609

(b) MIN

Figure 4.5. CPU power consumption of compute-bound microbenchmark on two clusters
in MAX and MIN frequencies.

Parallelism Tracer. Our analysis indicates that idle threads consume consid-
erable energy throughout execution. For example, it shows that running the

D3.3 Version 1.0 22 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Table 4.1. Power consumption profile of compute-bound tasks

Cluster (C) Frequency (F) Pidl Pone,Poth

A57
MAX 152 mW 854 mW / core
MIN 152 mW 76 mW / core

Denver
MAX 76 mW 2046 mW / core
MIN 76 mW 190.5 mW / core

worker loop on the Denver core roughly consumes 60% of the power of running
a compute-bound task. While on MIN frequency, the worker loop roughly con-
sumes up to 75% of the power of running a compute-bound task. To reduce the
total energy waste, the scheduler puts cores to sleep after they make several
unsuccessful steal attempts. We use an exponential backo� strategy when se-
lecting the sleep duration for idle cores. For each sleep decision, the runtime
checks a threshold parameter N, that is how many times the core has been un-
successfully trying to steal tasks. Upon wake up, if the core finds a ready task
or makes a successful steal, it resets the backo� parameter. Otherwise, it will
sleep for an exponentially increasing time if it can not find ready tasks. Listing 4.1
highlights the basic implementation of this approach.

1 i n t i d l e _ t r i e s = 0 , backoff_param = 0;
2 while (true) {
3 //check l o c a l queue or t r y to s t ea l
4 i f (no_avai lable_tasks) {
5 i d l e _ t r i e s + + ;
6 i f (i d l e _ t r i e s ==N) {
7 sleep (1 < < backoff_param) ;
8 i d l e _ t r i e s = 0 ;
9 backoff_param + + ;

10 }
11 } else {
12 backoff_param = 0;
13 i d l e _ t r i e s = 0 ;
14 // execute task
15 }
16 }

Listing 4.1 The exponential backo� sleep approach.

Task Energy Prediction. The prediction scheme of the energy e�cient task place-
ment for a single task is shown in Algorithm 1. The inputs include status that
stores the core states (sleeping 0 or active 1), incoming tasks. The output is the
predicted optimal task placement for each task. Line 5 shows the leader core
belongs to cluster A. Through accumulating the corresponding set bits, we can
obtain the number of active cores per cluster (Line 6-7). If there are any active
cores on cluster B, the parallel tasks running on the cluster A share total idle
power of the cluster, which can be obtained by powering o� cluster B (Line 8-9).
Otherwise, they share the entire board’s idle power since there is no active core
on cluster B (Line 10-11). Line 19 presents the resource occupation of task j over
all running tasks on cluster A. Line 20 demonstrates the estimation of idle power
for task j. The total dynamic power consumption of all tasks running on cluster A
can be obtained by plugging the values from the corresponding power profile in
the formula shown in Line 21. Line 22 involves the estimation of dynamic power
by task j. Finally, we could obtain the energy consumption estimation of the
task on specific configuration shown in Line 23. Line 24-27 iterate each possible

D3.3 Version 1.0 23 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

configuration until getting the optimal energy e�cient placement for the task.

Algorithm 1 Energy E�cient Task Placement Selection(for the case of two clusters)
1: Input: status, incoming task j
2: Output: optimal task placement for task j
3: Minimum = infinite
4: for each possible configuration (leader core, width) do
5: Leader core belongs to clusterA
6: NumActiveCores_clusterA = accumulate(status[x-y])
7: NumActiveCores_clusterB = accumulate(status[y-z])
8: if NumActiveCores_clusterB > 0 then
9: IdleP_temp-clusterA = IdleP_tot-clusterA
10: else
11: IdleP_temp-clusterA = IdleP_tot
12: Check if cores [leader, leader+width) are active
13: for i in leader,leader+width do
14: if status[i] is 0 then
15: NumActiveCores_clusterA++
16: Task j Resource Occupation: RO_j= widthj/NumActiveCores_clusterA
17: IdleP[j] = IdleP_temp-clusterA × RO_j
18: DynaP_tot = P_one + P_oth × (NumActiveCores_clusterA - 1)
19: DynaP[j] =DynaP_tot × RO_j
20: Energy = (IdleP[j] + DynaP[j]) × Execution Time
21: if Energy < Minimum then
22: Minimum = Energy
23: Update optimal placement with new (leader, width)

4.1.2.2. Energy Savings Evaluation

Table 4.2. Summary of evaluated schedulers.

Name Acronym Notion

Random Work Stealing Scheduler RWSS Typical greedy scheduler
Random Work Stealing Scheduler with Sleep RWSS+Sleep RWSS enhanced with Sleep
Fast Core Always Scheduler with Sleep FCAS+Sleep Performance-oriented criticality scheduler enhanced with Sleep
Low Energy Task Scheduler (D) LETS(D) The proposed scheduler prediction only using dynamic power
Low Energy Task Scheduler (D+S) LETS(D+S) The proposed scheduler prediction using dynamic and system idle power

We use an NVIDIA Jetson TX2 development board for our evaluation. The board
is set to MAX-N nvpmodel mode. The benchmarks are the same like in delive-
riable 3.2 section 4.1.2. All evaluated schedulers in this section are described in
Table 4.2.

Figure 4.6 shows the total energy consumption comparison of these scheduling
runtimes with or without Sleep. The results of "FCAS" without Sleep are dropped
in favor of reducing clutter in the figures, as the latter delivers a relative ad-
vantage similar to "RWSS+Sleep". It is obvious that LETS(D+S) achieves the best
energy savings over the other two schedulers in most of cases. Taking matrix
multiplication as an example, using LETS(D+S) achieves up to approximately 25%
energy savings compared to RWSS and FCAS+Sleep when the parallelism of the
task DAG is high (10 and 6). With a lower parallelism of 2, LETS(D+S) achieves
more energy savings which range from 6% to 60% compared to RWSS variants,
and from around 4% to 40% compared to FCAS+Sleep. In the case of minimum
cluster frequencies and high parallel slackness, i.e., MIN&MIN and DAG paral-
lelism=10 or 6, the energy consumption of LETS(D+S) does not add a notable
benefit (if any) since the two clusters operate at the lowest frequency, which
renders the scheduling decision of no vital impact for a compute-bound kernel.

D3.3 Version 1.0 24 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

0

20

40

60

80

100

120

140

10 6 2 10 6 2 10 6 2 10 6 2

MAX&MAX MAX&MIN MIN&MAX MIN&MIN

En
er

gy
 C

on
su

m
pt

io
n

[J
]

RWSS RWSS+Sleep FCAS+Sleep LETS(D) LETS(D+S)

(a) Matrix Multiplication - Energy Consumption

0

20

40

60

80

100

120

140

10 6 2 10 6 2 10 6 2 10 6 2

MAX&MAX MAX&MIN MIN&MAX MIN&MIN

En
er

gy
 C

on
su

m
pt

io
n

[J
]

RWSS RWSS+Sleep FCAS+Sleep LETS(D) LETS(D+S)

(b) Copy - Energy Consumption

0

40

80

120

160

200

10 6 2 10 6 2 10 6 2 10 6 2

MAX&MAX MAX&MIN MIN&MAX MIN&MIN

En
er

gy
 C

on
su

m
pt

io
n

[J
]

RWSS RWSS+Sleep FCAS+Sleep LETS(D) LETS(D+S)

(c) Stencil - Energy Consumption

Figure 4.6. The energy consumption comparison results of three benchmarks. The x axis
includes frequency combinations and task DAG parallelism. MIN&MAX means Denver is
set to MIN and A57 is set to MAX, and so on.

An important fact is that the energy consumption of LETS(D+S) is relatively stable
throughout all frequency combinations as opposed to others, which means that
our proposed scheduler could achieve the most energy e�cient task scheduling
no matter what cluster frequencies are, which implies that it is agnostic of the
OS DVFS events.

4.1.3. Support for Pipeline Parallelism

A significant amount of scientific applications execute the same workflow on
multiple input units of same size. Such applications can be expressed as paral-
lel pipelines by identifying the computational tasks of applications as pipeline
stages. Commonly, applications expressed as a chain graphs (DAGs) are ported
into parallel pipelines for e�cient scheduling on multi-core computing plat-
forms.

Pipeline paralleism is applied when a chain of tasks operate on a single input
unit to produce output and there is a data dependency from task ti to ti+1. All
the tasks are executed in parallel but on di�erent input units. We implemented

D3.3 Version 1.0 25 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

pipeline parallelism on the top of the existing XiTAO’s programming model.In
XiTAO, application is expressed as a DAG where each node is a standalone Task
Assembly Object(TAO). A TAO can be serial or parallel. Parallel TAOs contain it’s
on local scheduler, the mode of parallelism inside a TAO is Data parallel. Thus
XiTAO has a mixed-mode programming model. We implemented pipeline stages
as a self-calling TAO (making an edge to itself).

4.1.3.1. Pipeline Parallelism implemented in XiTAO

For the sake of understanding let’s consider a motivating example. An applica-
tion is divided into two tasks t1 and t2 such that, t1 processes an input token
and produce an output. The output from t1 is fed into t2 which further processes
and provides a final output. The application works on a stream of input tokens
of same size. Let’s define t1 and t2 as TAOs in XiTAO implementation. Ideally
there is an edge from t1 to t2 but since we are implementing a pipeline, we make
these TAOs a self-calling TAO. Whenever there is a ready input for pipeline stage
it should execute itself and notify the successive pipeline stage when its input
is ready. The mechanism of notifying successive stages about the ready input is
implemented in the form of a data structure which holds the number of input
units ready to be processed by corresponding pipeline stage. The mechanism is
explained in Figure 4.7.

1 01

PS 1 PS 2

Input
generator

Input buffer Output buffer

2

1

5 6

7
8

3

4

PS Status Vector

Figure 4.7. Step-by-step depiction of parallel pipeline stages in XiTAO runtime

Listing 4.2 highlight the necessary steps to implement XiTAO pipelines. Basic
functionality of each pipeline stage is abstracted out from line 2 - 15. Each
pipeline stage execute respective computations on input data (line 10-12) in par-
allel by the number of threads determined by the runtime. Once processing is
done, last thread of the TAO exiting the process_stage() computations does some
boilerplate work: Notifying next stage and calling same pipeline stage again for
next available input unit (Line 17 - 25). Finally in main(), we declare pipeline
stages and launch only once. Note that each pipeline stage will remain active
in the system until last input unit is processed by last pipeline stage. However
Pipeline moldability is achieved by changing the resource width of the TAO at
every call to xitao_push().

D3.3 Version 1.0 26 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 # def ine MAX_INPUTS 100
2 # define NUMBER_OF_PIPELINE_STAGES 2
3 i n t PS_status [NUMBER_OF_PIPELINE_STAGES] ;
4 // Define p ipe l ine stage
5 c lass Pipel ineStage : publ ic Assemblytask {
6 publ ic : P ipel ineStage (i n t stage_number , i n t input_number , i n t batchSize) { }
7
8 void execute () {
9 i f (stage_number == 1)

10 process_stage1 () ;
11 else
12 process_stage2 () ;
13 i f (i s_ las t_ th read) // Last thread f i n i s h i n g the work should do the job of n o t i f y i n g
14 not i f y_and_ca l l () ;
15 }
16
17 void not i f y_and_ca l l () {
18 //work Forwarding
19 i f (stage_number ! = STAGES−1) // i f i t i s not the l a s t P ipe l ine stage
20 PS_Status [stage_number + 1] + = 1 ; // a c t i v a t e next stage for current input uni t
21
22 // S e l f _ c a l l i n g
23 input_number++ // pick next work item
24 i f (input_number <= batchs ize)
25 xitao_push (new Pipel ineStage (stage_number , input_number , batchSize)) ;
26 }
27 }
28
29 // execuet P ipe l ine
30
31 void main () {
32 Pipel ineStage PS1 = new Pipel ineStage (1 , 1 , MAX_INPUTS) ;
33 Pipel ineStage PS2 = new Pipel ineStage (2 , 1 , MAX_INPUTS) ;
34 generate_input_stream () ;
35 PS_Status [0] = 1 ; // F i r s t stage i s act i vated manually
36 PS_Status [1] = −1; //second stage i s in ac t i ve by defaul t
37
38 xitao_push (PS1) ; // Launch P ipe l ine stage 1
39 xitao_push (PS2) ; // Launch P ipe l ine stage 2
40
41 }

Listing 4.2 Pseudo code for implementing parallel pipeline stages in XiTAO

4.1.3.2. Template based Tensor-Expression Language for generating pipelined
XiTAO code

For the sake of usability and expressivity, we designed a simple template based
language targeting deep neural network applications. Convolutional Neural Net-
works (CNN) in particular consists of several convolutional layers in combination
with computationally light layers such as maxpooling and softmax layers. Each
layer processes on the output of previous layer and produces output for succes-
sive layer. The structure of CNNs resembles to chain graphs. Moreover inference
phase of CNNs is applied on a stream of input units for example object identi-
fication in video stream. Thus CNNs are a good case for experimenting pipeline
parallelism under XiTAO environment.

A three layered CNN [Conv1, Conv2, FC] is implemented using template based
tensor expression language in Listing 4.3. layer parameters and input tensors
are initialized from lines 4 to 26. Network structure is defined in lines 29 to 31.
The last argument of each layer specifies the pointer to preceding layer. Once
network structure is defined, we define pipeline stages for each layer at the back
end. Sequence of pipeline stages is determined by the last argument of layer
definitions. For example in line 30 conv1 is set as preceding layer of conv2. Line
34 launches the whole network which means pipeline stages corresponding to
each layer are launched under the XiTAO runtime. Figure 4.8 shows preliminary
results of the discussed approach executed on a homogeneous platform, a clus-
ter of dual socket Intel Heswell nodes. We executed a 3-layer-CNN network. The

D3.3 Version 1.0 27 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 # include " Pipel ineStages . h"
2 # include " TensorExpressions . h"
3
4 const i n t batchSize = 1 0 ;
5 const i n t W = 5 1 2 ;
6 const i n t H = 5 1 2 ;
7 const i n t C = 1 ;
8 const i n t R1 = 3 ;
9 const i n t S1 = 3 ;

10 const i n t C1 = 3 ;
11 const i n t K1 = 6 4 ;
12 const i n t R2 = 3 ;
13 const i n t S2 = 4 ;
14 const i n t C2 = K1 ;
15 const i n t K2 = 1 2 8 ;
16 const i n t R = 2 ;
17 const i n t M = 1000;
18 const i n t s t r i d e = 1 ;
19 const i n t padding = 1 ;
20
21 i n t main () {
22 Tensor <4 , f loa t > inputTensor ({ batchSize , H , W, C }) ;
23 auto input = TensorExpr <4 , f loa t > (inputTensor) ;
24 auto w1 = Tensor <4 , f loa t > ({ R1 , S1 , C1 , K1 }) ;
25 auto w2 = Tensor <4 , f loa t > ({ R2 , S2 , C2 , K2 }) ;
26 auto m = Tensor <2 , f loa t > ({M, R*R }) ;
27 x i t a o _ i n i t () ;
28
29 auto conv1 = Conv2D< f loat > (batchSize , R1 , S1 , C1 , K1 , H , W, C1 , s t r ide , padding , w1 , input) ;
30 auto conv2 = Conv2D< f loat > (batchSize , R2 , S2 , C2 , K2 , H , W, C2 , s t r ide , padding , W2 , conv1) ;
31 auto r e s u l t = FC< f loat > (batchSize , {M, R*R } , { R*R } , m, conv2) ;
32
33 x i t a o _ s t a r t () ;
34 r e s u l t . run () ;
35 x i t a o _ f i n i s h () ;
36 return 0 ;
37 }

Listing 4.3 Code for a small pipelined-XiTAO CNN

workload distribution is such that PS2 > PS1 > PS3. Since pipeline stage 2 is
heavier than the other two stages, a configuration in which more cores are given
to PS2 yields better execution time.

1177.08

244.024
123.181

0

200

400

600

800

1000

1200

1400

PS 1/1/1 PS 5/5/5 PS 5/10/5

Ex
ec

ut
io

n
tim

e
(s

)

Figure 4.8. Execution time of 15 input units with di�erent resource widths given to each
pipeline stage.

4.2. OmpSs

4.2.1. OmpSs@FPGA

OmpSs@FPGA is the OmpSs programming model extension towards the sup-
port of accelerators in FPGAs. AutoVivado / AIT has gone through versions 1.4.0
to 2.0.0, and 2.2.0 in the last 9 months of the project. In this deliverable we

D3.3 Version 1.0 28 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

present OmpSs@FPGA, summarize its status presented in the previous deliv-
erable [36], and the changes done to the runtime and compiler infrastructure
related to OmpSs@FPGA in this last period of the LEGaTO project.

4.2.1.1. OmpSs@FPGA description and status by mid-2019

The OmpSs [40, 15] programming model allows to express parallelism that will
be executed in the available resources among the host SMP cores, or integrat-
ed/discrete GPUs and/or FPGAs. OmpSs is based on task parallelism, and very
similar to OpenMP tasking. It is being used as a forerunner prototyping environ-
ment for future OpenMP features. On GPUs, both CUDA and OpenCL kernels are
supported. For FPGAs, OmpSs uses the vendor IP generation tools (Xilinx Vivado
and Vivado HLS [33, 50], or Altera Quartus [24]), to generate the hardware config-
uration from high-level code. OmpSs@FPGA can also leverage existing IP cores,
provided they adhere to the same interface with our software platform.

OmpSs@FPGA is a significant upgrade of the OmpSs infrastructure (Mercurium
source-to-source compiler and Nanos++ runtime) to incorporate FPGA support.
Figure 4.9 shows an example of an OmpSs application. In particular, function
matrix_multiply is defined as a task with input dependencies a and b and in-
put/output dependency c. Each call to this function will be converted in a task
that will be run when its dependencies are ready. This task has also been de-
fined to be potentially executed in two target devices: any of the cores of the
smp running the application and three instances of an accelerator that will be
built to do this task in the FPGA. The accelerator has been tuned by the program-
mer to exploit the parallelism of the FPGA by using some additional directives
(#pragma HLS) not related to OmpSs programming model. In the following sec-
tions, we will describe how the OmpSs compilation and runtime ecosystem helps
programmability, heterogeneity, memory transfers and tracing support, and fi-
nally, mechanisms to develop blocking techniques from inside the FPGA.

Figure 4.10 shows the toolchain flow. In particular, it currently supports Xilinx
FPGAs using the Vivado HLS and Vivado tools through our autoVivado tool.

At the compilation level, the OmpSs application is split in two parts according to
the OmpSs directives. All functions annotated with the target device(fpga) direc-
tive are defined as tasks that will be transfered to the Vivado HLS tool for compi-
lation to IP cores. Additionally, the Mercurium compiler generates a stub/wrap-
per function for each task, used to invoke the corresponding IP core from our
Nanos++ runtime system, adapting the parameter passing. autoVivado tool in-
vokes Vivado HLS to transform the wrapper functions and the FPGA-annotated
functions into IP cores. Then, autoVivado connects them to the rest of the sys-
tem using Vivado and generates the bitstream with the accelerators. Also, a
configuration file (xtasks.config) with accelerator metadata is generated. This
is necessary for the Nanos++ runtime in order to know the type and number of
accelerators in the FPGA. This compilation process is automatically done by the
compiler avoiding hand made code errors and speeding up all the process of
hardware generation for the supported platforms (Zynq 7000 and Ultrascale+
families).

On the other hand, Nanos++ is the OmpSs runtime system. It takes care of ex-
ecuting tasks annotated by the programmer in the available resources. On het-

D3.3 Version 1.0 29 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 #pragma omp target device (fpga , smp) copy_deps num_instances (3)
2 #pragma omp task in ([BS] a , [BS] b) inout ([BS] c)
3 void matr ix_mult ip ly (f l o a t a [BS] [BS] ,
4 f l o a t b [BS] [BS] , f l o a t c [BS] [BS]) {
5 #pragma HLS i n l i n e
6 #pragma HLS a r r a y _ p a r t i t i o n var iab le =a \
7 block fac to r =BS/2 dim=2
8 #pragma HLS a r r a y _ p a r t i t i o n var iab le =b \
9 block fac to r =BS/2 dim=1

10 for (i n t ia = 0 ; i a < BS ; ++ ia)
11 for (i n t ib = 0 ; ib < BS ; ++ ib) {
12 #pragma HLS PIPELINE I I =1
13 f l o a t sum = 0;
14 for (i n t id = 0 ; id < BS ; ++ id)
15 sum += a [ia] [id] * b [id] [ib] ;
16 c [ia] [ib] += sum ;
17 } }
18 . . .
19 for (i =0 ; i <NBI ; i ++)
20 for (j =0 ; j <NBJ ; j ++)
21 for (k =0 ; k<NBK ; k ++)
22 matr ix_mult ip ly (AA [i] [k] , BB [k] [j] , CC [i] [j]) ;
23 #pragma omp taskwai t
24 . . .
25 }

Figure 4.9. OmpSs@FPGA Matrix Multiply benchmark

Figure 4.10. OmpSs compilation env. with FPGA support

D3.3 Version 1.0 30 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.11. High-level representation of the Nanos++ environment

erogeneous environments, Nanos++ has a specific subset of threads that repre-
sent each of the heterogeneous devices. We call these threads helper threads.
Figure 4.11 shows, on the left side, the code invoking the heterogeneous task
matrix_multiply and, on the right side, the overview of threads and task pool in
the runtime. The orange thread (thread number 4, on the right hand side of the
Global thread team) in the figure is one of those helper threads. In this particular
example, it may represent one FPGA accelerator.

Tasks can be also annotated with the implements(funcname) clause, indicating
that such task is a di�erent implementation of the same algorithm that func-
name implements. This allows the runtime system to select the best version to
run at any given point in time. This is done by applying a scheduling policy that
takes these alternative implementations into account.

Tasks annotated with the implements clause implement the same functionality
as other tasks but with a di�erent code. At compile time, two (or more) versions
of the task are built targeting di�erent computing units. At runtime, those tasks
can be executed on an SMP core or more devices. This means that when the
runtime system finds one of these tasks in the ready queue, it can be grabbed
by a regular worker thread, that will execute the SMP version of the task in a
SMP core. Or the task can be grabbed by one of the helper threads, and then
the device version of that task will be executed in the device represented by the
thread, transparently to the programmer (as shown in Figure 4.11 for the Matrix
Multiply).

4.2.1.2. Task Manager - SOM hardware runtime

The task manager is refactored to be more flexible and is renamed to SOM -
Smart OmpSs Manager. The new version of the manager is able to receive control
messages, to drive the execution of tasks, and the data transfers.

Additionally, the SOM IP now incorporates a round-robin scheduler to use as
much as possible all the di�erent instances of an accelerator.

The xtasks backend libraries is improved to use the commands interface of the
SOM.

D3.3 Version 1.0 31 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

4.2.1.3. Boards support and minor fixes

Minor issues have been fixed in Zynq7000, COM Express, Zynq U+, and Alpha-Data
environments, regarding the runtime and the instrumentation infrastructures.
Regarding the instrumentation, the interconnection is reorganized to reduce the
consumption of resources.

4.2.1.4. Compiler

Compilation problems are fixed in functions that are intrinsics in Vivado HLS.
Also, the compilation process is enhanced to take into account that there are
functions - like memcpy and math functions, that are interpreted by Vivado HLS
in a specific way. For those cases, we do not want that Mercurium generates
any prototype function definition. If it does, the function is not recognized as
intrinsic anymore by Vivado HLS. For those cases, and when the target of the
code is the FPGA, now Mercurium does not generate the function prototype.

Thanks to an improved support for moving data variables to the FPGA, it is
now possible to allow applying the target directive "#pragma omp target de-
vice(fpga)" to constant variable declarations.

The Mercurium compiler for the C language now automatically searches and
moves the functions called from inside FPGA tasks, to the HLS intermediate file,
for HLS compilation to the target. This avoids to have to annotate all functions
used with the target directive. Also we have included the support to be able to
call one function from several tasks.

The task wrappers are now labeled with the AIT version information to be able
to check it against the underlying framework.

In addition, wide data transfers, of 128 bits in Zynq U+ boards, and 512-bits in
the PCIe-based AlphaData boards is now supported. This option provided ad-
ditional performance on the applications that can exploit it. This is the case of
matrix multiplication and, in general, of applications doing large transfers. The
performance comparison is done in section 4.2.1.6.

4.2.1.5. autoVivado / AIT - Accelerator Interation Tool

The autoVivado tool is refactored to abstract itself from the vendor backend,
with the goal to be able to use backend toolchains from di�erent vendors in the
future. We have also renamed the tool to AIT - Accelerator Integration Tool.

Up to Vivado HLS release 2018.3 is found to work. Vivado versions starting in
2018 required an update on the code related to data transfers, to do properly
type conversions.

4.2.1.6. Evaluation

We evaluate the matrix multiplication benchmark on the current OmpSs@FPGA
infrastructure. Results show that we have improved the performance of the ap-
plication till around 155 Gflop/s, when using wide 128-bit accesses.

The experiment has been done on the Xilinx Development Kit ZCU102, incorpo-
rating the Zynq Ultrascale+ XCZU9EG chip, with 4 ARM Cortex A53 cores (1.3 GHz),
and the programmable logic, running at 300 MHz. The application places 3 in-

D3.3 Version 1.0 32 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.12. Evaluation of matrix multiplication on OmpSs@FPGA.

stances of the matrix multiplication kernel with block sizes of 256x256 single
precision elements.

Figure 4.12 shows the results obtained. From left to right it shows the Gflop/s
obtained on 1 to 4 cores, the FPGA with 1 instance of the block by block multipli-
cation (FPGA), 2 instances (2xFPGA), and 3 instances (3xFPGA); and the combina-
tions of 1, 2, 3 FPGA block instances with 1, 2 and 3 SMP cores. Blue bars represent
the performance obtained when using 32-bit based data transfers, and the red
bars when using 128-bit based data transfers.

On the current implementation, the high performance obtained from the FPGA
makes the additional 1-2 Gflops provided by each additional core, nearly unno-
ticed. I can be better appreciated in the 32-bit based data transfers version, on
experiments 3xFPGA, with 1, 2, and 3 additional cores.

4.2.2. OmpSs@Cluster

OmpSs@cluster is the distributed memory variant of the OmpSs programming
model. It is based on the latest iteration of the OmpSs programming model, i.e.
OmpSs-2 [5], which supports e�cient task nesting through weak dependencies
and early release of dependencies [35]. These features help open parallelism
and avoid centralized task creation and scheduling, leading to higher scala-
bility and greater use of the available parallelism in the underlying platform.
OmpSs@cluster was originally developed in the ExaNoDe project [39], and is
compatible with the SMP version of OmpSs-2, so that the same program and
compiled binary can be executed on either an SMP or a cluster. OmpSs@cluster
has been part of the OmpSs-2 public release since June 2019.

OmpSs@cluster is implemented via the Mercurium source-to-source compiler
and Nanos6 task-based runtime system. Only the node feature, described below,
requires support in Mercurium. Apart from this, no changes are required in the

D3.3 Version 1.0 33 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

compiler beyond those for the SMP variant of OmpSs-2.2 Most of the support for
OmpSs@cluster is implemented in Nanos6, through a new memory allocation
API for local and distributed arrays, a cluster-aware task scheduler and support
for inter-node o�oading of tasks over MPI.

Work in the LEGaTO project in OmpSs@cluster has concentrated on improving
the overall stability of the cluster runtime, porting a sparse matrix–vector ker-
nel to OmpSs@cluster and supporting the execution of irregular applications
through more e�cient tracking of location information in the Nanos6 depen-
dency system. The work on improved tracking of location information is ongoing
at the time of writing this deliverable.

4.2.2.1. Basic Concepts

OmpSs-2 [5] is the latest generation of the OmpSs parallel programming model
developed at BSC, which combines the design principles of two programming
models: Star Superscalar (StarSs) [4], and OpenMP [44], hence the name OmpSs.
OmpSs incorporates the main principles from StarSs, of tasking, dependencies,
and heterogeneity, and integrates them with OpenMP’s compiler directives (prag-
mas), which extend the C/C++ and FORTRAN programming languages. A sequen-
tial code is annotated with pragmas to produce a parallelizable version. A non-
OmpSs compiler will ignore the OmpSs pragmas, but the program will still exe-
cute correctly. This ease of use constitutes OmpSs’s philosophy as a productive
high performance programming model, with no need to redesign the code for a
parallel version.

OmpSs supports multiple parallel architectures including symmetric multipro-
cessing (SMP) of multicores and heterogeneous architectures (CPU + GPU), dis-
tributed-memory cluster architectures, and Field Programmable Gate Arrays (FP-
GAs).

Several features introduced in OmpSs have been included into the OpenMP stan-
dard: tasking in OpenMP 3.0, dependencies in OpenMP 4.0, and the taskloop
construct in OpenMP 4.5.

Execution Model

OmpSs-2 uses a thread–pool execution model in which parallelism is expressed
via tasks. In cluster mode, multiple instances of the application will be instan-
tiated, one per node on which the application will run. On each node, OmpSs-2
starts by initiating a pool of threads that will be used to execute the tasks across
the cores on that node.

The main function is wrapped as a task (main task). At the beginning of the
program’s execution, the first node (master node) enqueues the main into its
task queue. In this way, the main function is executed on just one node, which
is consistent with the sequential version of the application. One of the threads
on the master node will pick the main task and start executing the main thread.
All remaining threads will wait for a ready tasks that would be created later by
the main task or any other task.

2An existing binary of an OmpSs-2 program can benefit from cluster execution merely by
enabling the cluster-aware Nanos6 library.

D3.3 Version 1.0 34 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

#pragma oss task in (A [0 ;N]) in (B [0 ;N]) out (C [0 ;N])
foo (A , B , C) ;

Figure 4.13. Example of an OmpSs task with input dependencies over A and B arrays, and
output dependency over C array.

If a thread encounters a task construct, it will explicitly generate a new task
region, and when it is ready to execute, i.e. all dependencies have been satisfied,
it will be assigned to one of the worker threads in the thread-pool. Also, each
time a thread encounters a taskloop construct, the iteration space will be divided
into sub-tasks. All sub-tasks will collaborate to execute the loop, and all sub-
tasks will wait for other sub-tasks to finish executing their own portion.

The key features of OmpSs-2@Cluster are:

• Enforcing the expression of data dependencies between tasks to by mak-
ing sure that the developer includes all memory access in the dependency
list in the task clause. This assure the correct dependency order between
tasks, provide the necessary information to the runtime in order to per-
form data fetching for o�oaded remote tasks, and finally present a useful
information of the scheduler to bring data were the task is o�oaded.

• Distributed memory model and API that used by distributed computations.
It is allocated within a task context and required to be deallocated by the
same task, and can only be accessed by subtasks of the task that allocates
it.

Dependency Model

OmpSs-2 follows an asynchronous data-flow model, in which the order of task
execution is constrained by a dependency graph. The dependency graph is gen-
erated by the Nanos6 runtime using the addresses of the data dependencies
attached to the tasks. A task may have a combination of the following consisten-
cies, Read-after-Write (RaW), Write-after-Write (WaW), or Write-after-Read (WaR).
Dependencies are defined by the user in the task construct either using the
OpenMP depend clause or the OmpSs-style short notation. In addition, the se-
mantic of the depend clause is extended with the keywords in, out, or inout,
which correspond to defining input, output, or input–output access on the data
dependency range. Figure 4.13 shows an example of how to define tasks with
task dependences. In this example, all dependencies are defined over the N el-
ements of the A, B, and C arrays starting at the first element indicated by the
zeros in the example. At compile time, the compiler translates this dependency
information and aggregates it into a specific data structure that defines the task
and is used later by the runtime. When all the data dependencies have been
satisfied, e.g. all the task’s predecessors have finished executing, then the task
becomes ready for execution.

The scheduler is responsible for assigning an available CPU and binding it to
a thread. Alternatively, in OmpSs@cluster, the scheduler can decide to o�oad

D3.3 Version 1.0 35 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.14. Memory model of Nanos6. The address space is divided between local and
distributed memory. The local memory is further divided in equal chunks between the
cluster nodes. Each cluster node allocates local memory from its personal chunk of the
local memory space.

the task onto a remote node, using a push model. Hence, the task graph of the
entire application is distributed across all nodes.

If a task reaches a taskwait, it will be blocked and the associated CPU will be
freed to be used by another task. When a task finishes execution, all of its depen-
dencies will be released. OmpSs-2 also allows nested dependencies, i.e. tasks
inside tasks, giving the developer more control and gaining more flexibility to
reflect the underlying problem pattern. To gain even more fine grain tasking
and increase scalability, OmpSs-2 allows a parent task that has finishes execu-
tion and will not create further subtasks, to early release its own dependencies.
Hence, it will not need to wait for all children subtasks to finish executing, and
the worker thread can proceed to perform other computations.

OmpSs-2@Cluster Memory Model

All instances of the OmpSs@cluster application execute with the same virtual
address space. This allows a ready task to be executed by any node, without
address translation, so long as the necessary data copies are performed by the
runtime system. This common address map is set up by the Nanos6 runtime at
the start of execution, using the mmap system call. There are two types of the
virtual memory that are visible to the developer: local, and distributed memory.
Local memory is intended to be used by all computations within a single task
scope, and by input/output arguments of subtasks to the current allocator task.
Distributed memory is used for tasks that operate on distributed data, however
it can only be accessed by substasks of allocator tasks, and not the allocator
task itself. The local region is further subdivided into regions as many as cluster
nodes, and associate each region with each of the nodes. This allows to o�oad

D3.3 Version 1.0 36 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.15. Nanos 6 task o�oading model

local tasks to remote node into the same locale address as the homenode (node
o�oaded the task) without the need to translate address space between the two
nodes.

The distributed memory allocation API splits the distributed memory (Figure 4.14)
and assigns each node a region as in the local memory. However, the split occurs
according to a distribution policy parameter that is provided to the API, which
also guides the scheduler later. For tasks using standard memory allocators
such as the malloc libc function, they still will be managed by OmpSs-2@Cluster,
however the tasks will only run on the node that allocates the memory and will
not be o�oaded into other nodes.

OmpSs-2@Cluster Task distribution

One of the main functions of a cluster-runtime implementation of a program-
ming model is to handle computation’s (tasks in our case) distribution between
cluster nodes. For this to be true, a task has to satisfy all of its dependencies
and be in a ready state, then the scheduler will decide where to o�oad it. A
restriction must be taken into consideration, that the developer must define all
data dependencies and include all memory access in the dependency list. This
is an essential step for the scheduler to know the memory location and size of
the data associated with a task. Then it will later be able to send the correct
data when o�oading the task into another node or when copying data back to
the homemade.

Figure 4.15 depicts how tasks are o�oaded. The scheduler decides to o�oad
task T2 from Node 1 to Node 2, hence it creates a copy of the task and send
it to Node2, the original task T2 is kept on Node 1 to preserve the task graph
order on Node 1. T2 then can start execution and generate more subtasks (T2.0,
T2.1, and T2.2). The creation of these subtasks is completely transparent from

D3.3 Version 1.0 37 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Node 1 point of view that allows the distribution of the task graph of the entire
application among all nodes and avoid extra synchronizations. The scheduler
also decides to o�oad subtask T2.3 to Node 3. After T2.2 finishes it reports back
to the original T2.2 on Node 2, then now T2 reports back to the original T2 on
Node 1. Note that T3 will be in pending until T2 finishes execution and release
all of its dependencies.

4.2.2.2. Irregular Problems

The terms regular and irregular applying to code were originally coined by com-
piler designers. In regular code, there is no data dependency between memory
references. Dense Matrix–Vector multiplication is a good example of such reg-
ular flow. Without knowing any of the matrix or vector elements, and with the
knowledge of only the data input size, and the starting memory reference of the
matrix and vectors, the program behavior can be easily predicted.

Irregularity can emerge as one of three forms. Irregular control flow, which
emerges from conditional expressions. Irregular data-structure such as unbal-
anced tree, unstructured gird, or sparse matrix representation that might be
dynamic and change its structure at each iteration of the solution space. The
third source of irregularity is irregular communication and memory access pat-
terns that are characterized by a sparse data structures in which accesses are
made through a level of indirection or nonlinear array subscript patterns that are
inherently inconsistent with cache-based architecture which eventually hides
memory latency by memory reusing. The latter form of irregularity can be di-
rectly related to either control or data irregularity. The terms irregular algo-
rithms and irregular data-structures are used interchangeably in literature. Ir-
regular programs can be found in domains such as Sparse Direct Methods, data
mining, decisions problems that use Boolean satisfiability, optimization theory,
social networks, system modeling, compilers, discrete-event simulation, mesh-
ing, and n-body simulation. A major problem occurs when code has a large
amount of data dependency. The input values determine the runtime execution
behavior, hence the prediction of the program flow is a di�cult task and cannot
be elucidated statically. Exploiting the irregularity dependency requires runtime
strategies such as speculative or optimistic parallel execution methods. For ex-
ample, in an implementation of a binary search tree, the values and the order in
which they are processed a�ect the control flow and memory references. Pro-
cessing the values in sorted order will generate a tree with only right children
whereas the reverse order will generate a tree with only left children, thus exer-
cising a di�erent control flow path. Even with unsorted inputs, the order of the
values determines the shape of the tree as well as the order in which the tree is
built, thus a�ecting the memory reference stream. Graphs are similar to trees re-
garding their inherently irregular nature. The memory access patterns generally
have a data-dependent based on the fact that the connectivity of the graph and
the values on nodes and edges determine which graph elements are accessed
by a compute element. However, the connectivity and values are unknown prior
the input is available and may change dynamically.

D3.3 Version 1.0 38 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(a) (b)

Figure 4.16. Compressed Sparse Row (CSR) sparse matrix format representation. In (a) a
2D dense matrix, and (b) is the CSR representation of (a).

4.2.2.3. Case study: Sparse matrix–vector multiplation

This section discusses SpMV as a case study of problem with irregular data struc-
ture. This is an initial performance evaluation of the current Nanos6 runtime
on distributed memory system. We begin by first explain scaler SpMV imple-
mentation, and then OmpSs-2@Cluster parallel implementation. The OmpSs-
2@Cluster is then compared against pure MPI implantation of the same algo-
rithm.

Scalar CSR SpMV

Sparse matrix by dense vector multiplication is considered the cornerstone ker-
nel in direct solvers for sparse linear systems and iterative sparse eigenvalue
methods. Sparse matrix is any 2D storage with enough zeros that can be taken
advantage of by many storage formats. Compressed Sparse Row (CSR) or Yale
format considered the de facto format used in HPC applications. CSR represents
a 2D sparse matrix M by three 1-dimensional arrays A, JA, and IA, and organize
the nonzero elements by row order. Array A stores the nonzero elements, JA is
the corresponding column index of each nonzero element, and the IA array rep-
resents the row o�sets of each row inside A. Figure 4.16 illustrates an example
of CSR representation of a 2D dense matrix.

Sparse matrix–vector multiplication (SpMV) performs sparse matrix by dense
vector multiplication, defined by the equation: y = Ax, where x and y are dense
vectors, and A is an m × n sparse matrix. Figure 4.17 shows a pseudocode of a
scaler SpMV based on CSR format that we used as a reference implementation.
As observed CSR requires expansion and indirect indexing to the column entries
(x[JA[j]]), unlike the dense matrix representation where elements are stored
contiguously in memory. Essentially this implies irregular memory access pat-
tern with a naïve implementation.

D3.3 Version 1.0 39 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

void csr_matvec (i n t rows , double *A , i n t * JA , i n t * IA , double *x , double *Y)
{

for (i n t i = 0 ; i < rows ; ++ i)
{

double sum = 0 . 0 ;
for (i n t j = IA [i] ; j < IA [i + 1] ; ++ j)
{

sum += A [j] * x [JA [j]] ;
}
Y [i] = sum ;

}
}

Figure 4.17. Scalar Compressed Sparse Row (CSR) Sparse Matrix Vector Multiplication
(SpMV) Routine.

OmpSs-2 CSR SpMV

The SpMV OmpSs-2 implementation is a straightforward taskified version of the
scaler SpMV presented in code snippet in Figure 4.17. For simplification and bet-
ter understanding we explain the taskfication on the dense representation first
then we later map it to the CSR representation. A sparse matrix M of size m
(rows)× n (cols) is subdivided into tasks, at which each task will be assigned TS
number rows, thus total number of rows/TS tasks with each task work on TS×n
independent chunks of the matrix M . Reflecting the dense representation on
the CSR representation requires a simple mapping of each chunk in the original
matrix to the CSR arrays A, IA, and JA. This can be seen in the code snippet in
Figure 4.18.

4.2.2.4. Results

Figure 4.19 shows the strong scalability of the CSR-SpMV kernel from Subsec-
tion 4.2.2.4, in comparison with an optimized MPI implementation. OmpSs-2 was
tested with the all available schedulers, which are Locality and Random. The
benchmark was tested on the MareNostrum 4 supercomputer and the code writ-
ten in C/C++. The sparse matrices used were generated with 70% of the matrix
are zeros and stored as space-separated values file in CSR format. Figure 4.19
shows strong scalability of CSR-SpMV against MPI running on 1 up to 8 nodes
with 24,000 × 24,000 matrix.

Figure 4.20 provides an Extrae performance tool’s trace visualized via Paraver
tool showing the CSR-SpMV MPI execution on 2 nodes. The yellow lines show
the communications and synchronization points between threads of execution.
Each MPI process (rank) receives sub array copy of IA, JA, and A, and compute
(denoted by the blue stripes) its portion of the matrix (TS rows) and store it on
local output array. When all ranks finish, rank number 0 performs a reduction
operation on these local output arrays to produce the final array output.

The OmpSs-2 execution flow trace is shown in Figure 4.21(a) running on 2 com-
puting nodes. Figure 4.21(b) shows the same trace with the communication lines
(yellow lines) between tasks. The green stripes are CSR-SpMV kernel tasks. The
red strips mark tasks that o�oaded remotely from node 1 to node 2 in this case.

D3.3 Version 1.0 40 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

for (i n t k = 0 ; k < rows / TS ; ++k)
{

i n t chunkIndex = IA [k*TS] ;
i n t chunkSize = IA [TS * (k + 1)] − IA [TS*k] ;
i n t idx = k*TS ;

#pragma oss task \
in (A [chunkIndex ; chunkSize]) \
in (JA [chunkIndex ; chunkSize]) \
in (IA [idx ; TS + 1]) \
in (X [0 ; cols]) \
out (Y [idx ; TS]) labe l (csr_matvec_task)
csr_matvec (

TS ,
&A [chunkIndex] ,
&JA [chunkIndex] ,
&IA [idx] ,
X ,
&Y [idx]) ;

}

Figure 4.18. OmpSs-2 Compressed Sparse Row (CSR) Sparse Matrix Vector Multiplica-
tion (SpMV) of the scalar SpMV code from Figure 4.17

Figure 4.19. CSR-SpMV MPI vs. OmpSs-2 strong scalability of 24k x 24k sparse matrix on
MareNostrum 4.

D3.3 Version 1.0 41 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.20. CSR-SpMV MPI (of 24k x 24k matrix) execution trace showing communications
between threads (vertical yellow lines) and execution flow of concurrent threads shown
by the horizontal blue lines.

Figure 4.21. CSR SpMV OmpSs-2 execution trace of 24k x 24k sparse matrix on two nodes.
(a) showing trace with no communication lines. (b) with communication line.

D3.3 Version 1.0 42 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

#pragma oss task in (A [0 ;N]) in (B [0 ;N]) out (C [0 ;N]) node (1)
foo (A , B , C) ;

Figure 4.22. Example of an OmpSs task that must execute on node 1.

4.2.2.5. Streams and node clause

A large part of the overhead of multi-node execution (seen in Figure 4.19) espe-
cially for irregular problems, has been determined to be due to messages sent
by the Nanos6 cluster runtime to track location information. As remarked in
Subsection 4.2.2.1, before executing any ready task, it is necessary to ensure that
the node has an up-to-date copy of any data that is accessed through an in or
an inout dependency. This requires control messages to (a) track the location
information and, if necessary (b) to copy the data between nodes.

Tracking of location information is done through the dependency system, along-
side messages that indicate that data is ready to be accessed, with read or write
permission, as appropriate. In the original implementation, such messages re-
spect the nested hierarchy of tasks in the program source code, which often
requires several hops up and down the hierarchy via the common parent of two
tasks. We have repurposed the streams feature of Nanos6 in order to enable
a direct path for the common case where dependent tasks are running on the
same node.

In addition, we introduced the node clause to the task annotation, which causes
the task to always be scheduled to the same node. An example is given in Fig-
ure 4.22. This clause has been useful in experimentation and evaluation of the
scheduler. It is also useful for applications such as the Smart mirror use case
at the University of Bielefeld, which can be executed over multiple nodes (two
Xavier nodes) with the constraint that calls to the DarkNet neural network frame-
work are always made on the same node.

5. Runtime support for Fault Tolerance and Security
5.1. GPU Checkpointing
In the previous deliverable 3.2, we have discussed all the technical work car-
ried on to allow for GPU checkpointing in FTI. This work has been tested with
multiple applications and the evaluation has shown great performance results
as reported in D3.2. Afterwards, we focused on pushing this research line into
concrete outputs for the project.

5.1.1. Code Release

The prototype for GPU checkpointing was tested for correctness and high per-
formance, but significant changes were necessary in order to cleanly integrate it
into the FTI library. For this, a significant e�ort was done to provide a transpar-
ent API easy to use by scientific developers. We produced a new release of FTI,
release Heraklion v1.3.

This release includes full support for GPU checkpointing, a new version of di�er-

D3.3 Version 1.0 43 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

ential checkpointing, a complete implementation of incremental checkpointing,
and full support for HDF5 checkpointing. The GPU checkpointing features pre-
sented in the previous deliverable D3.2 have been also integrated in this release.
They can detailed as follows.

• New major feature allowing users to checkpoint data allocated in the GPU
device memory.

• New major feature allowing users to use incremental checkpointing for CPU
and GPU data by adding one by one the variables to the checkpoint file.

• New examples in the examples/GPU directory that checkpoint GPU data.

• New unitary tests for the new features.

• New configurable/flexible local test structure.

• Complete and full code documentation generated with Doxygen.

This software release is one of the important outputs of the Legato project and
it is public and open source, it can be downloaded and cloned from our github
repository https://github.com/legato-project/fti.

5.1.2. Paper Publication

In addition to the FTI release, we agregated all the design choices and exper-
iments into a scientific article explaining the novelty of our approach and the
high performance results observed on our results. The paper was accepted and
published in the proceedigns at the 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing.

5.2. FPGA Checkpointing
To provide Checkpoint Restart support for FPGAs in the LEGATO project we need
to take into account several aspects. Firstly, checkpoint restart is a valid ap-
proach in case of large-scale applications which execute on a distributed system
in which multiple nodes execute in parallel a part of the application. The norm
to develop applications on top of such systems is MPI. Consequently, our fault
tolerance library called Fault Tolerance Interface (FTI), main support targets such
an application design. LEGATOs main purpose is to provide a system in which the
developer has a clear overview of the system and a clear, well defined, path to
develop applications. Towards this direction, in the core of the Legato project
there is OMPSS, a programming model which provides support for development
of complex heterogenous devices for energy e�ciency and performance. OMPSS
is accompanied by a runtime system Nanos++. Nanos++ is designed to execute
the bulk of the runtime code on a CPU and o�oad any heterogenous tasks to
the di�erent accelerator available in the system (GPU, FPGA etc). The Nanos++
runtime system also takes care to transfer data e�ciently from and to the CPU
before/after a task executes. Consequently, when using the OMPSS program-
ming model, the data are initially allocated on the CPU accessible memory by
the developer, and the runtime transfers the data to and from the accelerator

D3.3 Version 1.0 44 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://github.com/legato-project/fti

device. To support C/R on an FPGA system FTI exploits the previous observa-
tion, in which data are going to be accessible from the CPU before or after the
termination of a task. Therefore, it is su�cient to store data to the checkpoint
only when they reside on the memory accessible directly from the CPU. Conse-
quently, FTI already provides such a support, however it is not straightforward
on how to compile an MPI library for FPGA systems, since typically it is required
to perform cross compiling of both MPI and FTI for the ARM architecture of the
processing system (PS) of the FPGA. To make it easier for developers to use our
fault tolerance library we provide an extension on our build script which semi-
automatically builds the library for such a system. To use the script one needs
to just update the paths of the cmake extension script called “fpga.cmake”. Af-
terwards the developer needs to invoke cmake as follows:

cmake -C ../fpga.cmake -DCMAKE_INSTALL_PREFIX:PATH=/path/to/fti
..

After building has finished, the user needs to copy all the created libraries into
the sd card of the FPGA system.

Currently, we have experimented with an implementation of K-Means which ex-
ecutes on 4 nodes each node consists of a zynq system (PS + PL), the actual
computation takes part on the PL using OMPSS@fpga tasks, whereas the check-
point is taking place on the PS on each node. Although, the C/R is taking place
correctly, the timings and the respective overhead are quite large, since the data
are written on the FPGA SD-Card which has slow write times. We plan to further
measure the overhead on more e�cient system setup.

5.3. FPGA Unvervolting for CNN Accelerators
We empirically evaluate an undervolting technique, i.e., supply voltage under-
scaling below the nominal voltage level, to improve the power-e�ciency of Con-
volutional Neural Network (CNN) accelerators mapped to Field Programmable
Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing
faults due to excessive circuit latency increase. We evaluate the reliability-power
trade-o� for such accelerators. We perform experiments on three identical sam-
ples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image
classification CNN benchmarks. This approach allows us to study the e�ects of
undervolting technique for both software and hardware variability. We achieve
a total of more than 3X power-e�ciency (GOPs/W) gain via undervolting. 2.6X
of this gain is the result of eliminating the voltage guardband region, namely, a
safe voltage region below the nominal level that is set by FPGA vendor to ensure
the correct functionality in the worst-case environmental and process scenar-
ios. 43% of the power-e�ciency gain is due to the further undervolting below
the guardband. However, this gain comes at the cost of accuracy loss in the CNN
accelerator. To alleviate this issue, we evaluate an e�ective frequency under-
scaling technique.

5.3.1. Introduction

Deep Neural Networks (DNNs) and specifically Convolutional Neural Networks
(CNNs) have recently attained significant success in image and video classifi-
cation tasks. They are fundamental for state-of-the-art real-world applications

D3.3 Version 1.0 45 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

running on embedded systems as well as data centers. These neural networks
learn a model from a dataset in their training phase and make predictions on
new, previously-unseen data in their classification phase. However, their power-
e�ciency is inherently the primary concern due to the massive amount of data
movement and computational power required. Thus, the scalability of CNNs for
enterprise applications and deployment in battery-limited scenarios, such as in
drones and mobile devices, is a crucial concern.

Typically, hardware acceleration using GPUs [52], FPGAs [43], or ASICs [28] leads
to a significant reduction in CNN power consumption. Among them, FPGAs are
rapidly becoming popular. This increase in the popularity of FPGAs is attributed
to their power-e�ciency compared to GPUs, their flexibility compared to ASICs,
and recent advances in High-Level Synthesis (HLS) tools that significantly facili-
tate easier development of FPGA-based designs. Hence, major companies, such
as Microsoft Brainwave project [18], have made large investments in FPGA-based
CNN accelerators. However, recent studies show that FPGA-based accelerators
are at least 10X less power-e�cient compared to ASIC-based ones. We aim to
bridge this power-e�ciency gap by empirically understanding and leveraging an
e�ective undervolting technique for FPGA-based CNN accelerators.

FPGA hardware vendors usually add a voltage guardband to ensure the correct
operation of FPGAs under the worst-case circuit and environmental conditions.
However, these guardbands can be very conservative and unnecessary for state-
of-the-art applications. We extends undervolting studies to real FPGAs running
CNNs. Specifically, we study the classification phase of FPGA-based CNN acceler-
ators, as this phase can be repeatedly used in power-limited edge devices (unlike
the training phase, which is invoked much less frequently). Unlike simulation-
based approaches that may not be accurate-enough [41], our study is based on
real o�-the-shelf FPGA devices.

Reducing the supply voltage in the voltage guardband region does not lead to
reliability issue under normal operating conditions, and thus, eliminating this
guardband can result in a significant power reduction for real-world applica-
tions. We experimentally demonstrate a large voltage guardband for modern
FPGAs: an average of 31.5% with a slight variation across hardware platforms and
software benchmarks. Eliminating this guardband leads to significant power-
e�ciency (GOPs/W) improvement, on average, 2.6X, without any performance
or reliability overheads. With further undervolting, the power-e�ciency im-
proves by an extra 43%, leading to a total improvement of more than 3X. This
additional gain does not come for free, as we observe exponentially-increasing
CNN accuracy loss below the guardband region. With further undervolting be-
low this guardband, our experiments indicate that the minimum supply voltage
at which the internal FPGA components could be functional (Vcrash) is equal to,
on average, 65% of Vnom. Further reducing the supply voltage results in system
crash.

We evaluate our undervolting technique on three identical samples of the Zynq-
based ZCU102 platform, a representative modern commercial FPGA from Xilinx.
We experimentally evaluate the e�ects of reduced-voltage operation in on-chip
components of the FPGA platform, including Block RAMs (BRAMs) and internal
FPGA components, including Look-Up Tables (LUTs), Digital Signal Processors

D3.3 Version 1.0 46 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(DSPs), bu�ers, and routing resources.1. We perform our experiments on five
state-of-the-art CNN image classification benchmarks, including VGGNet [13],
GoogleNet [10], AlexNet [48], ResNet [17], and Inception [16]. This enables us to
experimentally study the workload-to-workload variation on the power-reliability
trade-o�s of FPGA-based CNN accelerators. Specifically, we extensively charac-
terize the reliability behavior of the studied benchmarks below the guardband
level and evaluate a frequency underscaling technique to prevent the accuracy
loss in this voltage region.

5.3.2. Experimental Results: Voltage Behavior Analysis

We present and analyze our experimental results from reduced-voltage opera-
tion on FPGA boards. These results are collected at ambient temperature. Each
result presented is the average of 10 experiments account for any variation be-
tween di�erent experiments; although, the variation we observed was negligible.

5.3.2.1. Power Analysis of FPGA-based CNN Accelerators at the Nominal Voltage
Level (Vnom)

We measure the total on-chip power consumption of the baseline configura-
tion to be an average of 12.59W for benchmarks, at the nominal voltage level
(Vnom) and ambient temperature. This value includes the power consumption
at on-chip voltage rails, including VCCBRAM and VCCINT . We observe that in-
ternal FPGA components on the VCCINT rail dissipate more than 99.9% of this
on-chip power. We believe this observation is due to power-e�cient BRAM de-
signs, using techniques like dynamic power gating, in modern Ultrascale+ FPGA
platforms, including in the studied ZCU102 FPGA. Older generations of Xilinx FP-
GAs like the 7-series are not equipped with this capability. Thus, for such older
devices, BRAM power consumption was the main source of FPGA power con-
sumption, as shown in our previous studies [42]. To this end, as we study the
power-reliability trade-o�, we concentrate on VCCINT due to its dominance in
FPGA power consumption.

5.3.2.2. Overall Voltage Behavior

Our experiments reveal that a large voltage guardband below Vnom exists for
VCCINT , as shown in Figure 5.1 for three hardware platforms and five CNN bench-
marks. In the voltage guardband region, as we reduce voltage there is no perfor-
mance or reliability degradation, and thus, under normal conditions, eliminating
this voltage guardband can lead to significant power savings without any over-
head. As Figure 5.1 shows, we measure the average guardband amount to be
850mV − 570mV = 280mV , with a slight variation across di�erent benchmarks.
In other words, we observe that Vmin = 570mV (on average) is the minimum safe
voltage level of the accelerator, where there is no accuracy loss. As we further
undervolt below Vmin, we enter a region called the critical region in which the re-
liability of the hardware and, in turn, the accuracy of the CNN starts to decrease
significantly. As Figure 5.1 depicts, we measure the average critical voltage re-
gion size, to be 570mV − 540mv = 30mV , with a slight variation across di�erent
benchmarks. As we further undervolt below Vmin, we reach a point at which the
FPGA does not respond to requests and it is not functional. This point is called

1These internal FPGA components share a single voltage rail in the studied FPGA platform. To
our knowledge, such voltage rail sharing is a typical case for most modern FPGA platforms

D3.3 Version 1.0 47 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Vcrash. We find that Vcrash = 540mV on average, with a slight variation across
di�erent benchmarks.

Figure 5.1. Voltage regions with a slight workload-to-workload variation (averaged
across three hardware platforms).

5.3.3. Power-reliability Trade-o� for Reduced-voltage FPGA-based CNN Accel-
erators

In this section, we elaborate the power-reliability trade-o� for the FPGA-based
CNN Accelerators under reduced-voltage operation.

5.3.3.1. Power-E�ciency Analysis

Figure 5.2 presents the power-e�ciency results (GOPs/W) for five di�erent CNN
workloads. As expected, reduced power consumption with further undervolting
results in constantly improved power-e�ciency in both guardband and critical
voltage regions. Consequently, the power-e�ciency at Vcrash is more than 3X of
that at Vnom, for the same design of the given CNN accelerator. 2.6X of the gain
in power-e�ciency is the result of eliminating the voltage guardband without
any CNN accuracy loss. 43% further power-e�ciency gain is due to further un-
dervolting in the critical region that comes at the cost of CNN accuracy loss.

D3.3 Version 1.0 48 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(a) VGGNet. (b) GoogleNet. (c) AlexNet. (d) ResNet. (e) Inception.

Figure 5.3. E�ect of reduced supply voltage on the accuracy of CNN workloads (separately
for three hardware platforms).

Figure 5.2. Power-e�ciency (GOPs/W) improvement via undervolting with INT8 quan-
tized and without pruning at ambient temperature (averaged across three hardware plat-
forms).

5.3.3.2. Reliability Analysis

As we undervolt until Vmin, there is no reliability overhead. However, as we fur-
ther undervolt below Vmin, the reliability of the hardware is significantly a�ected
due to the further increase in datapath delay. The e�ect of the reliability loss is
fully application-dependent due to di�erent resilience levels of di�erent appli-
cations. We study this e�ect on several CNN workloads. Figure 5.3 depicts our
experimental results. As shown before, as we reduce the supply voltage, power-
e�ciency improves. When we reduce the supply voltage below Vmin, we observe
that the accuracy of all benchmarks gradually reduces. With further undervolt-
ing, when the supply voltage reaches an average of 560mV across di�erent plat-
forms and benchmarks, the accuracy of the benchmarks drops greatly, and the
classifier behaves randomly. Our experiments show that benchmarks with more
parameters, e.g., ResNet and Inception are relatively more vulnerable to under-
volting faults below Vmin. Also, as seen, there is a variation of ∆Vmin = 31mV
and ∆Vcrash = 18mV across di�erent FPGAs. This variation can be due to the
process variation across di�erent FPGAs.

5.3.4. Frequency Underscaling

As shown earlier, in the critical voltage region below the guardband, CNN classifi-
cation accuracy dramatically decreases. In this section, we aim to overcome this
accuracy loss by exploiting frequency underscaling. To be more precise, we aim
to find a more energy-e�cient voltage setting than the undervolted Vmin, which
also provides accurate results. To this end, for each voltage setting below Vmin,
we aim to identify the maximum frequency value Fmax with which the system
does not experience any accuracy loss. When we find this frequency, we evaluate
the energy e�ciency of the system. As we underscale the frequency of the sys-
tem, the performance of the application reduces. Therefore, we use the GOPs/J
metric as it accommodates for both performance and energy consumption. Ta-

D3.3 Version 1.0 49 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

ble 5.1 summarizes the experimental results of the frequency underscaling in
the critical voltage region (averaged across three hardware platforms). These
experiments are based on frequency and voltage steps of 25Mhz and 5mV , re-
spectively. The column VCCINT corresponds to the supply voltage of a given set-
ting. The column Fmax corresponds to the maximum frequency at which leads
to no accuracy loss. The remaining columns: GOPs, Power, GOPS/W , GOPS/J
are normalized to the respective values of executing the system in the setting
VCCINT = Vmin = 570mV,FMax = 333Mhz which are the baseline settings used
to obtain results presented in Section 5.3.2. Table 5.1 indicates that multiple volt-
age settings VCCINT map to the same operating Frequency Fmax: supply voltages
between 560mV to 545mV require same frequency of Fmax = 250Mhz. This is
because the frequency step we use is 25Mhz. Using smaller steps of frequency
can distribute the Fmax values more evenly.

Table 5.1. Evaluation of frequency underscaling to prevent CNN accuracy loss in the criti-
cal voltage region, at ambient temperature (averaged across three hardware platforms).

VCCINT

(mV)
Fmax

(Mhz)
GOPs

(Norm)
Power

(Norm)
GOPs/W

(Norm)
GOPs/J

(Norm)

570 333 1.00 1.00 1.00 1.00
565 300 0.94 0.97 0.97 0.87
560 250 0.83 0.84 0.99 0.75
555 250 0.83 0.78 1.06 0.80
550 250 0.83 0.75 1.10 0.83
545 250 0.83 0.74 1.12 0.84
540 200 0.70 0.56 1.25 0.75

For all the combinations of (Vi, Fi) that provide error-free results presented in
the Table 5.1 in the critical voltage region, power consumption decreases with
decreasing Vi < Vmin and Fi < Fmax. This behavior is because we decrease both
the supply voltage and the operating frequency. However, at the same time,
we e�ectively decrease the performance of the system. Consequently, the best
combination in terms of energy e�ciency is the one with the highest frequency
of Fmax = 333Mhz, which also is our baseline. In other words, it is not worth to
underscale the frequency and voltage to find a more energy-e�cient execution
point. However, as a trade-o�, at lower voltage-frequency levels, the design is
more power-e�cient.

5.4. Trusted Key Management

In LEGaTO, we make use of TEE technologies (e.g., Intel SGX) to protect legacy ap-
plications in an untrusted environment. We enable these applications to run in
Intel SGX enclaves without any source code modification by using our toolchain
SCONE [3]. However, note that running applications inside SGX enclaves is not
enough to ensure the confidentiality and integrity of them. First, we need to
ensure the code and data of applications running inside enclaves are correct

D3.3 Version 1.0 50 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

and not be modified by anyone e.g., an attacker. Second, we need to guarantee
that they are properly configured and securely provisioned with the “secrets”
(e.g, encryption/decryption keys, TLS certificates) to execute inside enclaves. In
other words, we need to provide a mechanism to securely transfer the config-
uration and secrets (encryption/decryption keys, TLS certificates, etc) to start
them inside enclaves. We also need to ensure not only confidentiality, integrity
but also freshness of their data and code to protect them against rollback at-
tacks. In addition, these secrets of applications should not be maintained under
control of single entity or stakeholder— which maybe compromised and would
represent a single point of failure.

Typically, traditional approaches are often based on ad hoc techniques and rely
on a hardware security module (HSM) as root of trust to handle these challenges.
In the context of this project, we propose a more powerful and generic ap-
proach [20, 21] to trust management that relies on TEEs and a set of stakeholders
as root of trust. We designed and implemented a framework, called PALAEMON,
which can operate as a managed application deployed in an untrusted envi-
ronment, e.g., a public cloud. We can delegate operations of PALAEMON to an
untrusted cloud provider but still guarantee the integrity and confidentiality of
data without trusting any individual human (even with privileged/root access)
and system software.

5.4.1. Approach: A Trusted Management Service

In this section, we describe how our proposed framework addresses the above
introduced challenges.

One of the major functionalities of the proposed framework (PALAEMON) is to
transfer secrets in a trusted manner to applications running inside enclaves af-
ter attesting them. Each application is executed in Intel SGX enclaves and as-
sociated with a security policy that defines which applications can access which
secrets on which hosts. Applications are identified by a MRENCLAVE [14] and the
content of the files they can access. Secrets are typed and can either be explicitly
defined, or randomly generated by PALAEMON.

Access to a security policy is guarded by a two-stage access control mechanism
using a certificate and a policy board (see Figure 5.4). One can define the access
control and security policy in such a way that only applications under the control
of the security policy can gain access to the secrets. In this way, one can prevent
any stakeholder from accessing the secrets.

Secrets can be passed to applications as command line arguments, environment
variables, or can be injected into files. The files can contain PALAEMON variables
referring to the names of secrets defined in the security policy. The variables
are transparently replaced by the value of the secret when an application that
is permitted to access the secrets reads the file. By transparently, we mean that
the application is not aware of the replacement and its code does not need to
be modified.

Secret management is supported through security policies, whose general struc-
ture is shown in Figure 5.4. Each policy has a unique name and can define: (a) the
permitted MRENCLAVE of an application (several MRENCLAVEs can be specified

D3.3 Version 1.0 51 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

!

OK OK NO"Client

#

CRUD
Client cert.

$

Application arguments

Environment variables

Allowed hosts

% ! %
OK OKNO

Application

&'Tag MRE
(

Policy board

"))

Policy

*
!# ?

Figure 5.4. Overview of security policies.

to facilitate software updates); (b) the set of permitted platforms on which the
application is permitted to run, or none if permitted to run on any platform;
(c) the key and tag of the file system (the tag is a secure hash across all files,
which are transparently en/decrypted with the key inside the Intel SGX enclaves);
(d) the command line arguments; (e) the environment variables; (f) a set of files
to inject secrets into; and (g) imports/exports of secrets from/to other policies.

5.4.1.1. Managed PALAEMON

!
! Report

REST/TLS !

!

!
Accept

Policy board

"" "
!

#

Untrusted
provider

IAS

Reject
PALÆMON
CA

#RC
MREs…

PALÆMON

#
MRE

Cert.

/report

/report

#

Figure 5.5. Principle of managed PALAEMON deployment and operation.

Our objective is to support a feature that we can delegate the management of a
PALAEMON instance to an untrusted party, e.g., a cloud provider, while the clients
of PALAEMON can still trust that their secrets are safe and well protected. Note
that the cloud provider has full control over what code it executes and might try
to run variants of PALAEMON that are wrongly configured or have modified code.
We ensure that clients connecting to a PALAEMON instance can attest it, i.e.,
they can verify that this instance runs the expected unmodified PALAEMON code.
Moreover, this code does not support any configuration options that negatively
influence the confidentiality, integrity and freshness of client data stored in the
instance.

We support two ways to attest a PALAEMON instance (see Figure 5.5): (i) using
TLS [19, 51]; and (ii) with explicit attestation. The TLS-based attestation requires
a trusted CA with a known Root Certificate (RC). The CA first attests the PALAE-
MON instance using approach (ii) to ensure that this instance runs inside a SGX
enclave and has a correct MRENCLAVE. Only then will the CA provide the instance
with a certificate signed with the RC. The CA itself runs inside of a SGX enclave
and can be attested using explicit attestation. Entities that trust the CA can at-
test the instance by checking that its TLS certificate is signed by the RC.

To support software updates of PALAEMON itself, the CA includes a set of cor-
rect MRENCLAVE. The CA only signs certificates for these MRENCLAVE and also

D3.3 Version 1.0 52 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

limits the duration of the certificates to ensure timely upgrades to new versions
of PALAEMON. The set of MRENCLAVE is stored inside of the CA’s binary, i.e., an
adversary cannot modify the set without invalidating the MRENCLAVE of the CA.
Hence, deploying a new version of PALAEMON requires first to deploy a new ver-
sion of the CA.

Clients might not trust the CA if they do not use the current set of valid MREN-
CLAVE, e.g., they only trust code instances that have been deployed some time
ago, or are not represented in the PALAEMON policy board. These clients need to
attest the PALAEMON instance in the same way that the CA attests instances, as
described in § 5.4.1.4. In practice, any updates of PALAEMON must be approved
by all stakeholders.

5.4.1.2. Robust Root of Trust

Our threat model permits Byzantine behaviour of stakeholders like software de-
velopers and system administrators. Any change to an application or its config-
uration can impact the confidentiality, integrity and freshness of both data and
code. PALAEMON therefore includes a mechanism to ensure that any security
policy modification must be approved by at least f+1 stakeholders. Here, we
assume that we have a set of n stakeholders and a threshold f (with f<n), such
that n−f stakeholders can be trusted at any point in time, i.e., at most f of them
exhibit Byzantine behaviour because of neglect or malicious intent. Therefore,
if at least f+1 stakeholders approve a change at least one of them judged it
to be trustworthy. To that end, a securities policy can define a policy board
and a threshold—typically set to f+1—of policy board members that must give
approval for PALAEMON to permit any create, read, update and delete (CRUD)
access to the policy. Upon creation, the board of the new policy must also ap-
prove the operation. In that way, any client can create policies as long as they
have unique names, and the policy board agrees to take control over them.

Each policy board member is represented in the security policy by a certificate
and a URL of an approval service, responsible to approve or reject accesses to the
policy. Upon a client access, PALAEMON contacts the board members, verifies
their certificates and asks them for approval of the request via a TLS-secured
REST call to their approval service.

Approval services typically run inside Intel SGX enclaves. In case the associated
board member is a person, they should perform a two-factor authentication with
one being based on biometric identifiers. Approval services may also consist of
services that check certain aspects of a policy, e.g., through source code analysis
and verification of the MRENCLAVE. In particular, a policy board member could
be an organisation that validates software, i.e., perform checks on behalf of their
clients to ensure that the software associated with a certain MRENCLAVE can be
trusted to protect the confidentiality, integrity and freshness of data.

Some policy board members can be given veto rights, i.e., they can unilaterally
reject a policy change. For example, a data provider might only provide data to
applications for which it is a policy member with veto rights. In that way, the
data provider can ensure that policy changes will not result in data leakage.

D3.3 Version 1.0 53 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5.4.1.3. Application Attestation and Configuration

Upon startup, an application is transparently linked with the SCONE runtime and
loaded inside a SGX enclave. The SCONE runtime first attests the application with
the help of PALAEMON before passing control to the application. To do so, it cre-
ates a random key pair and gets a report from a local quoting enclave [27] that
associates the public key with its MRENCLAVE. The runtime sends the report via
a newly-established TLS connection to PALAEMON and passes along the name
of its security policy which is stored in an unprotected environment variable.
The PALAEMON instance verifies that: (i) the public key of the TLS client certifi-
cate matches the public key of the report; (ii) the security policy name exists
and the MRENCLAVE is valid for the application; and (iii) the application runs
on a permitted platform—which we can verify with the report. If this attestation
succeeds, PALAEMON sends the following data to the application: the command
line arguments; the environment variables; the keys and tags for the file system;
and the set of files in which secrets should be injected together with the secrets
as key/value pairs.

The PALAEMON runtime supports transparent injection of secrets into existing
configuration files via a simple variable replacement mechanism. This allows us
to inject di�erent secrets into di�erent instances of the same application image,
without the need to change the source code. Like all files, they can be confi-
dentiality, integrity and freshness-protected via transparent encryption by the
PALAEMON runtime. The runtime injects the secrets it received from the PALAE-
MON instance in each file as follows. The file is first read in enclave memory,
then parsed, and all variables found are replaced by their values. Whenever the
file is accessed, it is served from memory. While sizeable files can also be stored
encrypted in main memory or on the file system, configuration files are typically
small, so we keep them in enclave memory as long as they fit.

5.4.1.4. PALAEMON Attestation

A client of a managed PALAEMON instance must be able to ensure that the code
of PALAEMON was not modified and indeed runs inside of an Intel SGX enclave.
As a matter of fact, we must guarantee that an infrastructure provider cannot
configure PALAEMON in any way that breaks the trust given by the client in PALAE-
MON. We enforce this by designing PALAEMON for its behaviour to depend solely
on MRENCLAVE, i.e., PALAEMON has zero configuration parameters that a�ect its
behaviour with regard to ensuring the confidentiality, integrity and freshness of
the data stored in the instance by the clients.

A client connecting to a PALAEMON instance has to attest the instance before
performing any action, such as creating a new security policy. During the initial
startup, a PALAEMON instance creates a unique public/private key pair, as well
as a random key to encrypt its file system, and stores these keys in sealed stor-
age [22]. During a restart (after an exit or a failure), the instance reads the keys
from sealed storage to be able to authenticate itself. We actually use SGX to en-
force that only PALAEMON instances on the same platform can read the sealed
file.

When the PALAEMON instance starts up, it attests itself via IAS [2, 26]. On a suc-
cessful attestation, it gets a report from IAS that associates its MRENCLAVE with

D3.3 Version 1.0 54 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

its public key. The instance can send this report to the PALAEMON CA to obtain
a certificate for the public key mentioned in the report. Clients that connect
to the instance via TLS are served this certificate after successful verification of
the certificate by the instance. The clients can then verify the instance via TLS by
ensuring that the certificate is signed by the PALAEMON CA. Alternatively, clients
can request the IAS report via a REST API provided by PALAEMON, and then verify
that the report: (i) was indeed signed by IAS, and (ii) associates the PALAEMON
MRENCLAVE with the public key of the certificate. At that point, the clients know
that the instance runs inside of a SGX enclave and has the correct MRENCLAVE,
i.e., they can now safely send requests.

Note that clients might themselves run inside a SGX enclave and obtain the per-
mitted MRENCLAVE from their security policy. Moreover, they might be limited to
connecting only to certain PALAEMON instances identified by their public keys.

We implemented PALAEMON based on our toolchain SCONE [3] running on top
of Intel SGX [14]. However, note that we designed PALAEMON in a generic way
that can be used not only for SCONE but also for other SGX platforms such as
Graphene [46]. In addition, we used Rust [32] to implement PALAEMON since it
ensures strong type safety. We use an encrypted embedded SQLite [1] database
running inside the same enclave as PALAEMON.

5.4.2. Evaluation: Micro-benchmarks

We evaluate PALAEMON using both micro- and macro-benchmarks (see §5.4.3).
All our experiments are executed on a rack-based cluster of Dell PowerEdge R330
servers. Each machine is equipped with an Intel Xeon E3-1270 v6 CPU and 64GB of
RAM. The machines are connected to a 20Gb/s switched network. SGX is statically
configured to reserve 128MB of RAM for the EPC [14]. We use Ubuntu 16.04 LTS
with Linux kernel v4.13.0-38. The CPUs use the latest microcode patch level.

The underlying SCONE runtime, beside hardware mode (HW) running with Intel
SGX, it also supports emulation mode (EMU) to run legacy applications without
any Intel SGX support. We conducted experiments also with EMU mode to high-
light the performance overhead of the Intel SGX.

Attestation and Configuration. First, we evaluate how long it takes to attest and
configure an application. The advantage of PALAEMON over the traditional way
using IAS to perform attestation is that PALAEMON runs on the local cluster. We
measured the time it takes to perform the individual steps of remote attestation
(see § 5.4.1.4). The IAS experiment ran on servers in Europe and in Portland, OR,
USA (close to IAS servers).

Figure 5.6 shows the time it takes to: (i) initialize the necessary resources; (ii) send
the quote to PALAEMON; (iii) wait for PALAEMON to confirm the successful attes-
tation; and (iv) receive the configuration.

The initialization phase includes key pair generation, DNS resolution, connec-
tion establishment, and TLS handshake with PALAEMON. Overall, the initializa-
tion time is similar for each attestation service and is dominated by the TLS
handshake.

Obtaining and sending the quote takes longer for IAS variants for two reasons.

D3.3 Version 1.0 55 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

IAS (EU) IAS (US) Palæmon

T
im

e
 [
s
]

Attestation Latencies

Initialization
Send Quote

Wait Confirmation
Receive Config

Figure 5.6. Attestation and configuration latencies: even when located close to Intel’s IAS
server, attestation with IAS takes about an order of magnitude longer than with PALAE-
MON.

10
−3

10
−2

10
−1

10
0

1 10 100 1000

L
a
te

n
c
y
 [
s
]

Throughput (#starts/sec) ×1000

IAS Palæmon HW SGX w/o Native

Figure 5.7. Startup latency and throughput using attestation variants.

First, performing IAS attestation requires providing information that is embed-
ded into the generated quote, which adds one round trip. Second, PALAEMON
attestation cryptography (Ed25519 [6]) is less expensive than the one used by
IAS (EPID [9]). However, the dominating factor for IAS is the time spent waiting
for the attestation. PALAEMON has to verify the quote either by querying the
IAS or by verifying the signature and looking up the public key of the QE. Over-
all, PALAEMON attestation takes around 15ms to complete, which is an order of
magnitude faster than IAS attestation which takes 280ms when performed from
the USA, or 295ms from Europe.

Our benchmark starts multiple minimal programs in parallel to measure the
startup throughput and latency. Figure 5.7 depicts the latency and throughput
for di�erent attestation variants. In the Native case (SGX and attestation are not
involved), the throughput scales well until all eight hyper-threads are fully uti-
lized. At this point, the system runs around 3,700 programs every second. If the
program is compiled with SGX but without attestation (SGX w/o), the throughput
drops to about 100 executions per second. This variant does not scale well with
increasing parallelism. We tracked down the bottleneck to the Intel SGX driver
synchronising EPC page (de)allocations with a single lock. Since every enclave
has to obtain EPC pages at roughly the same time, this lock basically enforces
page requests to be served sequentially.

With IAS and PALAEMON, the startup routine performs remote attestation before
executing the actual program. With PALAEMON attestation, we quickly reach the
maximal achievable start rate of about 90 runs per second. IAS attestation needs
a considerable amount of parallelism to partially hide the higher latency, reach-
ing about 40 runs per second (60 parallel instances) at 1.4s latency.

Secret Injection Latency. We measure the impact of injecting secrets in a file
by an application running inside an enclave. To that end, we read a 4kB file in

D3.3 Version 1.0 56 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

 0

 5

 10

 15

 20

 25

 30

 35

read update

L
a
te

n
c
y
 [
m

s
]

Tag Latency

 0

1

2

3

4

5

6

Plain

file

Encrypted

file

Palæmon

1 secret

Palæmon

10 secrets

 baseline baseline

 [2.619 ms] [2.619 ms]

 2.02× 2.02×

 0.36× 0.36× 0.36× 0.36×

L
a
te

n
c
y
 [
m

s
]

Secret Injection Overhead

Figure 5.8. Left: latency of PALAEMON tag reads and updates. Right: reading overhead
for a file with 1 or 10 secrets normalized by the time to read a plain file.

0

0.2

0.4

0.6

0.8

1

1.2

1 5 50 100

L
a
te

n
c
y
 [
s
]

Total number of secrets retrieved via HTTPS

Local Local+Same DC Local+Remote

Figure 5.9. Latency to retrieve multiple secrets (up to 100) from a PALAEMON service de-
ployed locally, from the same data centre (DC) or from an instance running on a di�erent
continent.

which we inject 1 and 10 secrets (Figure 5.8 right). We show the latency as well as
the overhead compared to the baseline on top of each bar. PALAEMON achieves
better latencies for files with injected secrets—even compared to the plain file
baseline—because the secrets are injected during startup and stay in enclave
memory.

Secret Access Latency. PALAEMON supports the retrieval of keys from remote
PALAEMON services. We measure the overhead of retrieving local and remote
secrets, i.e., when using PALAEMON in a decentralized fashion (Figure 5.9). There
is no visible increase in latency when retrieving 1, 5, 50 and 100 keys of 32bytes.
As a matter of fact, retrieving 50 or 100 keys consistently outperforms 1 or 5 keys.
However, there is an impact if a peer service is located on a di�erent continent
instead of the same data centre. This is mainly caused by the time it takes to
establish of a TLS connection.

5.4.3. Evaluation: Macro-benchmarks

Our macro-benchmarks run using real-world systems the NGINX web-server, the
ZooKeeper distributed coordination service, and the MariaDB database server (a
fork of MySQL) All these systems benefit from PALAEMON for additional security
guarantees; we evaluate its impact on performance.

NGINX. Along the same lines, we use an encrypted NGINX [38] container image
and rely on PALAEMON to: (i) encrypt all the files; (ii) inject the certificates; and
(iii) inject private keys used by NGINX for TLS termination. The benchmark issues
GET requests on 67kB files (nowadays’ average size of an HTML web page [29])
with the wrk2 tool (see Figure 5.10 (a)). We see that the overhead of SGX alone
is less pronounced than that of encrypting all files. Tuning the caching done
by NGINX could improve the performance when encrypting files. There is little

D3.3 Version 1.0 57 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

 0

 10

 20

 30

 40

 50

0 2 4 6 8

L
a
te

n
c
y
 [
m

s
]

Throughput (req/s) ×1000

(a) nginx

HW+shield EMU+shield Palæmon HW Palæmon EMU Native

0

200

400

600

800

1000

 0 20 40 60 80 100

Throughput (req/s) ×1000

(b) ZooKeeper  read

 0

 10

 20

 30

 40

 0 10 20 30 40 50

Throughput (req/s) ×1000

(c) ZooKeeper  setsingle

0

0.5

1

1.5

2

2.5

3

8 64 128 256 512

T
s
x
/s

 ×
1
0
0
0

Buffer Pool Size (MB)

(d) MariaDB

Figure 5.10. (a) Throughput/latency for GET requests on 67kB files, in five variants of
nginx. ZooKeeper: read (b) and write (c) operations. (d) MariaDB with TPC-C benchmark
(d): increasing bu�er pool helps native more than EMU or hardware.

di�erence between running in emulation mode and inside of an SGX enclave,
since not much paging is taking place.

ZooKeeper. Next, we evaluate the overhead of PALAEMON with the ZooKeeper
coordination service. We deploy a cluster of three nodes and evaluate three
ZooKeeper variants: (i) native using stunnel [49] for TLS termination between
servers; (ii) shielded ZooKeeper running together with the JVM in hardware mode;
and (iii) EMU mode.

We use the ZooKeeper Benchmark [30] to measure read and write throughput.
The read throughput of the shielded versions is consistently better than the
native one (Figure 5.10 (b)). The write throughput (Figure 5.10 (c)) exhibits better
performances in native mode, as it involves the execution of consensus [23] via
TLS, resulting in more code and system calls being executed. Our results are on
par with SecureKeeper [8], despite its use of an encryption proxy to protect the
content only.

MariaDB. We conclude our macro-benchmarks by measuring the throughput of
MariaDB configured to perform encryption at rest [31]. We use PALAEMON to in-
ject a generated X.509 certificate, the private key and the encryption key. We exe-
cute the TPC-C benchmark [45] and vary the available bu�er cache. Figure 5.10 (d)
presents experimental results. For small bu�er pool sizes [34], i.e., <128MB, all
configurations behave similarly since the main overhead is hardware I/O. For
larger bu�er caches, EPC paging increases in hardware mode. Hence, adding
more bu�er cache reduces the throughput while it increases the throughput in
emulation and native mode. A fair comparison with the recently proposed En-
claveDB [37] system is currently not possible since it lacks paging support and
its performance figures are only based on simulations.

6. Runtime Support for Application Development
6.1. OmpSs@Linter as a debug tool
We have completed the implementation of the Linter tool for OmpSs-2 applica-
tions. Changes applied to OmpSs-2 include:

• New instrumentation variant. We have included a new instrumentation
option to Nanos6, to subscribe to some task-level events of interest related
to the Linter tool, mainly related to task management.

D3.3 Version 1.0 58 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

• New Mercurium directive. We introduced an OSS lint directive and a new
verified clause to the OSS task directive.

• New Mercurium analysis pass. We also enriched the Mercurium built-in
infrastructure for static analysis with a new algorithm that analyzes the
source code of an OmpSs-2 program and annotates it with the verification
annotations.

6.1.1. OmpSs Linter

The Linter is a run-time tracing tool based on a dynamic binary instrumenta-
tion tool built on top of Intel’s PIN [25]. It takes as input an application paral-
lelized using OmpSs-2, and it provides a report of all parallelization issues that
are encountered by tracing the application. When an OmpSs-2 application is
run through this tool, memory accesses issued by tasks are recorded and tem-
porarily saved to a storage area. For each task, the recorded memory accesses
are later processed at task completion time and compared with task informa-
tion (e.g., dependences) to check for potential parallelization errors. For each of
such errors, a warning is generated to report to the user about the problem. The
report comes with additional contextual information:

• address and size of the mismatching memory access (if any) along with its
access mode (i.e., read or write);

• name of the involved dependency (if any) with the expected directionality
(in, out, inout);

• variable name (if found);

• task invocation point in the source code (i.e., line in the respective file).

The tool operates at two di�erent levels of abstraction: (1) the abstraction level
provided by the OmpSs-2 programming model to deal with task and depen-
dences, and (2) the abstraction level provided by the target Instruction Set Archi-
tecture (ISA) to recognize accesses to memory, which in our case is AMD64. As il-
lustrated in Figure 6.1, the target program is composed of the actual OmpSs-2 ap-
plication and, if available, debugging information (i.e., symbol table and DWARF
sections). The target program interacts with Nanos6 to execute in parallel on
the available cores. When OSS directives are translated by Mercurium into calls
to Nanos6, these calls invoke task-based primitives which update the internal
execution state of each task. Internally, Nanos6 maintains a state machine for
each task to keep track of its execution state over time. Nanos6 provides an
Instrument API to subscribe to state transitions in the task state machine and
perform custom actions. Our instrumentation tool is composed of three main
components: the PIN virtual machine (VM) that performs dynamic binary instru-
mentation and two modules that perform memory access tracing of the binary
executable. The frontend module is dedicated to intercepting the accesses per-
formed by the application at run-time and generating the actual traces, while
the backend module is responsible for the processing of traces and generates
the final user report. Our tool interacts with the rest of the software as follows.
It executes the original application via the Pin VM. Events of interests at the ISA

D3.3 Version 1.0 59 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 6.1. OmpSs@Linter environment

abstraction level (i.e., memory reads and writes) are intercepted via the PIN VM
itself, which gives control to the trace generator module. Out tool also inter-
cepts events of interests at the OmpSs-2 programming model level via Nanos6’s
Instrument API; these events are: when a task is created or destroyed, begins or
ends, is put to wait via a full or partial synchronization, or when dependences are
available or released. When one of these events occurs, the PIN VM once again
gives control to the frontend module. The backend module is invoked when a
task completes execution. It loads traces from the storage area and combines
them with information coming from Nanos6 via the Instrument API to detect par-
allelization errors. To provide contextual information, each entry of this report is
further combined with information coming from the available debug metadata,
if any, in the executable file. To date, the tool supports all core functionalities
of OmpSs-2 shared with TMP, plus the manual release of dependences, the if
and final task attributes, commutative and concurrent dataset entries. Other
advanced parallelization constructs are not supported, meaning that all errors
resulting from the use of these directives cannot be detected. Despite that, the
resulting restricted OmpSs-2 model is nevertheless general enough to support
a wide range of real-world applications and use cases, as shown in the next
section.

Internally, local task analysis is implemented using binary search tree operating
on intervals of memory addresses. These intervals can be easily derived from
dataset entries, due to the way OmpSs-2 enables the user to specify as dataset
entries entire C, C++, Fortran objects, or portions of it (included arrays). As for
task accesses, our tool implements an aggregation operation that merges all the

D3.3 Version 1.0 60 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

accesses coming from the same instruction and involving consecutive memory
accesses. While this aggregation has a detrimental e�ect on performance when
it comes to building the access-set of a task, it speeds up the subsequent lo-
cal task analysis. Indeed, checking for the di�erent errors becomes a matter of
intersecting di�erent binary search trees, looking for overlapping intervals, and
checking for the conditions 1 to 3. All intervals without found matches are re-
ported as an error. The case of E3 errors is slightly more complex as it involves
barriers. Our approach for condition 3 was to maintain an expiry clock for all
dataset entries of all child tasks of a task. The expiry clock is set as soon as we
exit from a barrier. If it is a barrier with no dataset, all the child dataset entries
are set as expired. Otherwise, we only set as expired the dataset entries that
match with the entries in the barrier. Accesses are then compared with the child
dataset entries that are not expired at the time each access is performed.

6.1.1.1. The lint directive

The lint directive is used inside task code to avoid analyzing the code wrapped
by the directive. This is useful to mark code that has no e�ect on the dataset of a
task. For example, we can mask library functions performing I/O operations, or
exclude initialization and finalization code in a task that is known to only access
private memory. The directive also allows specifying which memory operations
are performed within a marked region of code, and to which memory addresses.
The directive accepts three main clauses: in, out, inout. They are equivalent
to those specified for a task dataset and allow the user to state which are the
shared data objects read and/or written within the wrapped code. The local
task analysis can use these data-references as a hint of the accesses that were
performed within the code so that it does not have to derive them by itself. This
brings many benefits in terms of accuracy and performance of the analysis.

Consider the code cases depicted in Figure 6.2. In the first case (i), we are using
the oss lint directive to instruct the analysis that an allocation has been per-
formed. At the same time, we are also disabling the analysis within the malloc
function, which is probably a good idea given that its implementation can be
arbitrarily complex and can involve accesses to shared objects (e.g., locks) de-
fined within the library that implements it. The second case (ii) is analogous to
the first, but memory is released. The analysis is also disabled, so that whatever
happens within the call to free () will not be considered during the analysis. The
third example (iii) describes a very common case in which we are using some
API functions to read and write bu�ers in memory via I/O operations. It is what
happens, for example, with the MPI_Send and MPI_Recv functions. According to
the textual description of these functions, and regardless of their implementa-
tion, they are respectively reading/writing N bytes from/to memory. Not only
the implementation of these functions can be arbitrarily complex so as to slow
down the analysis by orders of magnitude, but it can also a�ect the accuracy of
the generated report negatively. Indeed, the synchronization mechanisms used
within these functions are independent of the OmpSs execution model and, as
such, may require to access objects that are not (and should not be) declared
as dependences in the task where these functions are invoked. The fourth case
(iv) is that of nested loops where the final e�ect is that of traversing a well-
defined portion of an array for reading and/or writing. By marking this code

D3.3 Version 1.0 61 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(i)
#pragma oss l i n t inout (x [0 : n])

x = malloc (n * s i z e o f (i n t)) ;

(i i)
#pragma oss l i n t out (x [0 : n])

f ree (x) ;

(i i i)
#pragma oss l i n t in (sendbuf [0 : s i z e]) out (recvbuf [0 : s i z e])
{

MPI_Send (sendbuf , s i z e , MPI_BYTE , dst ,
block_id +10 , MPI_COMM_WORLD) ;

MPI_Recv (recvbuf , s i z e , MPI_BYTE , src ,
block_id +10 , MPI_COMM_WORLD , MPI_STATUS_IGNORE) ;

}

(i v)
double A [N / TS] [M / TS] [TS] [TS] ;
#pragma tmp l i n t out (A [i] [j])

for (long i i = 0 ; i i < TS ; i i ++)
for (long j j = 0 ; j j < TS ; j j ++)

A [i] [j] [i i] [j j] = value ;

Figure 6.2. Examples of use of the lint directive

with the pragma and summarizing its behavior, we are saving the cost of analyz-
ing a number of accesses that are proportional to the number of iterations. The
analysis would still correctly detect all the accesses performed within the loop
without any accuracy concern, but the overall execution time would be much
greater due to the cost of analysis.

6.1.1.2. The verified clause

Users are also o�ered another way to disable analysis at the level of whole tasks,
via the verified keyword that can be passed to the oss task pragma. Conceptually,
the e�ect of the verified flag is equivalent to wrapping the entire task code within
a lint pragma, specifying as dataset the same data-references used for the task
pragma. Performance-wise, the verified attribute is equivalent to wrapping the
entirety of task code with a lint pragma, because the analysis is disabled for
the whole task. The verified task also comes with an optional expression that
evaluated at run-time to decide whether memory tracing for the task will be
disabled or not. This expression can be used to conditionally evaluate tasks
that are more likely to be subject to programming errors, for example, tasks that
are related to boundary loop iterations. Additionally, it can be used as a way to
implement task-level sampling and reduce the overall memory tracing overhead
of the application (e.g., instrument one out of N task instances).

Figure 6.3 shows an example of the use of the verified clause. In the first task,
verified states that the task data accesses do not need to be checked, as the
complete code in the task is assured to be correct. The verified clause in the
second task takes an expression. If the the expression is true, the task code

D3.3 Version 1.0 62 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

i n t x ;
. . .
for (i n t i = 0 ; i < N ; i ++) {

#pragma oss task inout (x) v e r i f i e d
{

. . .
}

#pragma oss task inout (x) v e r i f i e d (x < 5)
{

. . .
}

}

Figure 6.3. Example of use of the verified clause

does not need to be checked. This characteristic can be used to check only
corner cases.

6.1.2. Evaluation: Benchmarks

The evaluation of the Linter tool has been carried out on six typical kernels
(matmul, dot-product, multisaxpy, mergesort, cholesky, and nqueens), and three
applications (nbody, heat, and HPCCG). We describe the codes below:

6.1.2.1. matmul

This benchmark runs a matrix multiplication operation C = A · B, where A has size
N × M, B has size M × P, and the resulting matrix C has size N × P. Parallelization
is achieved using block partitioning with block size TS. The problem size for this
benchmark is given by M ×N × P . The degree of parallelization for this benchmark
is given by TS. In our experiments we use M = N = P = 128, and TS = 8.

6.1.2.2. dot-product

The dot-product takes two equal-length N vectors and returns a single scalar.
Parallelization is achieved using block partitioning with block size TS. The prob-
lem size for this benchmark is given by N. The degree of parallelization for this
benchmark is given by TS. In our experiments we use N = 8192 and TS = 64.

6.1.2.3. multisaxpy

This benchmark runs several SAXPY operations. SAXPY stands for “Single-Precision
A·X Plus Y”. It is a Level 1 operation in the Basic Linear Algebra Subprograms
(BLAS) package and is a typical operation in computations with vector proces-
sors. Each SAXPY operation solves the equation Y = A · X + Y , where X and Y are
two vectors of size N , and A is a scalar value. Parallelization is achieved by block
partitioning with block size TS. The problem size for this benchmark is given by
N. The degree of parallelization for this benchmark is given by TS. A further pa-
rameter I specifies the number of times the SAXPY problem will be solved. In our
experiments we use N = 4194304, TS = 1024, and I = 1.

D3.3 Version 1.0 63 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

6.1.2.4. mergesort

This benchmark runs a Merge Sort operation. It recursively halves an unsorted
vector X and sorts these chunks, until it gets to a sorted vector Y. Paralleliza-
tion is achieved via a divide-and-conquer approach, which relies on a maximum
chunk size TS. This means that all chunks will a size lower than TS will not create
new tasks. The problem size for this benchmark is given by N. The degree of
parallelization for this benchmark is given by TS. In our experiments we use N =
65536 and TS = 512.

6.1.2.5. cholesky

This benchmark runs a Cholesky decomposition over a square matrix A of side
N. The code uses the CBLAS and LAPACK Linear Algebra libraries. Parallelization
is achieved using tiling, which relies on block partitioning with block size TS. The
problem size for this benchmark is given by N. The degree of parallelization for
this benchmark is given by TS. In our experiments we use N = 16384 and TS = 128.

6.1.2.6. nqueens

This benchmark computes, for a N × N chessboard, the number of configurations
of placing N chess queens in the chessboard, such that none of them is able to
attack any other. It is implemented using a Branch-and-Bound algorithm. A sub-
problem consists of checking if the current queen, placed at coordinates (i, j) on
the chessboard, can be attacked by any of the existing M < N of queens already
placed. Further search on each sub-problem is stopped as soon as an attack
from one of the existing M queens is found. Otherwise, the current queen is
added to the solution. If it was the N-th queen, the current solution is a valid
solution to the N-queens problem. Placements are evaluated from left to right,
top to bottom. Parallelization is achieved by spawning an independent task for
each sub-problem until we reach the j-th column. The rest N - j columns will not
generate any tasks and will be executed serially. The input to the problem is the
chessboard size N and the column threshold TS. Therefore, the problem size for
this benchmark is given by N. The degree of parallelization for this benchmark
is given by TS. In our experiments we use N = 10 and TS = 4.

6.1.2.7. nbody

An N-body simulation numerically approximates the evolution of a system of
bodies that interact with each other. It has applications in many scientific fields:
astrophysical simulation, protein folding, and turbulent fluid flow simulation, to
name a few. This application makes use of MPI for coarse-grained paralleliza-
tion. Both computation and communication phases are taskified. However, com-
munication tasks are serialized to prevent deadlocks between processes since
communication tasks perform blocking MPI calls. The input to the problem is
the number of interacting particles N and the number of iterations I to compute
the interactions between them. The problem size for this benchmark is given by
N. The degree of parallelization for this benchmark is given by TS, which is the
number of particles that are handled in parallel by each thread of each process,
and R, which is the number of processes. In our experiments we use N = 4096,
TS = 64, and I = 1.

D3.3 Version 1.0 64 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

6.1.2.8. heat

The Heat simulation uses an iterative Gauss-Seidel method to solve the heat
equation, which is a parabolic Partial Di�erential Equation (PDE) that describes
the distribution of heat (or variation in temperature) in a given region over time.
Just like N-body, the application uses MPI for coarse-grained parallelization. The
input to the problem is the size along one dimension of the grid used to compute
heat N and the number of iterations I. The problem size for this benchmark is
given by N. The degree of parallelization for this benchmark is given by TS, which
is the block size along one dimension, and R, which is the number of processes.
In our experiments we use N = 4096, T S = 64, and I = 1.

6.1.2.9. HPCCG

Solves the equation A · X = b, where A is a large sparse matrix, and B and X
are vectors such that X is the unknown. The problem is discretized with a finite
di�erence scheme on a 3D rectangular grid domain and solved via a precondi-
tioned conjugate gradient method. The input to the problem is Nx, Ny, and Nz
, which are the sub-grid dimensions in the 3D space assigned to the di�erent
processes. Parallelization is achieved by assigning each sub-grid to a di�erent
process and by using block partitioning based on the number of threads for each
process. Therefore, the problem size for this benchmark is given by Nx × Ny × Nz
× R, where R is the number of processes. The degree of parallelization for this
benchmark is given by R and T, which is the number of threads per process. In
our experiments we use Nx = 50, Ny = 150, Nz = 50.

6.1.3. Evaluation: Results

All the experiments have been executed on the Marenostrum4 supercomputer.
Each compute node is equipped with two Intel Xeon Platinum 8160 CPUs with
24 cores each, thus totaling 48 cores per node, and 96 GB of main memory. The
interconnection network is based on 100 Gbit/s Intel Omni-Path HFI technology.
The MPI benchmarks are run on 4 nodes, while the other benchmarks are run on
a single node.

Figure 6.4 shows the slowdown and the absolute execution time (in seconds) for
the benchmarks described above. Each bar represents a di�erent benchmark
and a di�erent evaluation experiment. Benchmark names with no lint or autolint
su�x are run without the aid of the static analysis tool and without using the
OSS lint directives.

Benchmark names with the lint su�x are run with the OSS lint directives to an-
notate third party libraries. Only cholesky and the MPI applications use this
technique, in order to annotate the calls to the Intel MKL and Intel MPI third-
party libraries.

The autolint su�x represents the case of running the benchmark with the aid
of the static analysis tool implemented in Mercurium, which in turn exploits the
existing OSS lint directive, thus showing the e�ectiveness of the analysis pass
implemented in Mercurium.

For each bar, we also report the slowdown in the execution time cost, split into:
(green) the minimum instrumentation cost to run the application using PIN (the

D3.3 Version 1.0 65 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

base case in the legend); (orange) the minimum instrumentation cost to instru-
ment memory instructions, even without processing them (the instr case); (blue)
the full analysis cost (the full case in the legend).

Overall, the mechanism works in three phases. Initially, users can annotate the
portions of code that they know for sure are correct with the proposed directives
and clauses (see subsection 6.1.1.1 and 6.1.1.2). Then, the compile-time compiler
pass analyzes the code with the objective of verifying parts of code. At this stage,
the compiler can take di�erent actions: (a) any issue detected is reported to the
user prior to execution, (b) the parts of the code that cannot be analyzed stati-
cally are left for instrumentation, and (c) the parts of code that are analyzed and
decided to be correct, are verified using the same directives and clauses o�ered
to the user with such a purpose. Finally, a run-time tool executes the code and
instruments only those parts that have been verified neither by the user nor by
the compiler. As we can see from the figure, the slowdown for the pure runtime
instrumentation case (no su�x) can be quite high for some benchmarks (e.g.,
dot-product or mergesort). In the case of cholesky, the overhead is quite high
due to the heavy use it makes of Intel’s MKL library. However, we note that even
so, the absolute execution time is in the order of minutes, thus not undermining
the usability of the tool-chain. We ran a breakdown analysis of these cases and
detected the major source of overhead to be the insertion of accesses in our
binary search tree, which is used to aggregate contiguous accesses coming from
the same instruction over time, and to compare them with task dependencies.
In the case of nqueens, another major source of overhead is that of recording
the issues encountered in the application, which still uses a binary search tree.

The other two sources of overhead are the instrumentation cost depicted in the
base and instr cases. This is not only due to the way PIN internally works, but
also to the nature of each application. In fact, we already disable instrumenta-
tion whenever the application performs calls to the OmpSs-2 run-time system
or the standard C/C++ libraries. Additionally, we disable the instrumentation of
private-memory instructions (such as stack instructions) in serial regions of the
application, where there cannot be issues.

When using external libraries protected by the directive OSS lint directive, the
improvements in terms of slowdown can be critical. By appropriately marking
those calls with the new directives, the run-time instrumentation tool only needs
to instrument the OSS lint directive itself, and store a number of accesses that is
proportional to the intervals specified in the in, out, and/or inout parameters of
the pragma itself. This is critical for the case of cholesky, as each task only per-
forms a single call to a di�erent function in the MKL library, but these calls inter-
nally hide a huge number of accesses to memory that are the primary source of
overhead for the instrumentation. Performance improvements can also be ob-
served for the case of MPI benchmarks, which use the Intel MPI library, although
the impact is not so important. For example, while heat is communication-
intensive and so protecting calls to MPI is highly e�ective, nbody and HPCCG
are computation-intensive, so the use of the directive does not improve the ex-
ecution overhead by much.

Using OSS lint directives and leveraging the compile-time analysis tool brings
the most evident benefits, as it can be seen for matmul, dot-product, and mul-

D3.3 Version 1.0 66 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 6.4. Evaluation of the overhead (slowdown in the execution time) for the bench-
marks executed under OmpSs@Linter

tisaxpy. In this case, the compile-time tool can automatically wrap whole for-
loops into directives, or even insert the verified flag to tasks within loops. In all
these cases, the performance improvements are drastic because the instrumen-
tation tool can disable tracing for most of the execution time of the application.
We note that these improvements are not uncommon for real-world scenarios,
as many kernels have a regular loop structure.

As for nqueens, we observe that the static tool is unable to infer useful infor-
mation due to the nature of the code and can only wrap in directives simple
memory-accessing statements. This has an e�ect in our run-time tool that is ac-
tually worse than not placing them, thus suggesting that additional work can be
put in the static tool to avoid wrapping simple statements, and in the run-time
tool to reduce the overhead of processing OSS lint directives. In mergesort, the
tool can only partially simplify the handling of accesses in the merge phase of
the algorithm because the number of iterations that are performed in each part
depends on the contents of the two sub-arrays to merge. For this reason, the
overhead improvements are minimal. Similar considerations can be made for
the MPI benchmarks and especially for HPCCG, where the main kernel perform-
ing an MKL-like dgemm operation could not be annotated at all due to the fact
that a sparse matrix representation is used. As for cholesky, we observe that
each task only performs a single call to an MKL library function, so the compile-
time tool can successfully promote the existing oss lint pragmas to the verified
clause at the level of tasks, but this brings little additional benefits compared
to the lint case.

Overall, the experimental evaluation suggests that the absolute execution cost
of running the selected applications against the run-time tool is a�ordable and
that the synergistic exploitation of static analysis and pragmas can drastically
reduce this cost.

D3.3 Version 1.0 67 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 6.5. VGG traces for two events.

6.2. Extrae support in XiTAO
Extrae is a dynamic instrumentation tool to trace programs compiled with par-
allel programming models. The traces are visualised using paraver. Extrae has a
built-in support for state-of-the art parallel programming models such as OpenMP,
pthreads, MPI and CUDA. Extrae library can also be used to trace events of in-
terest in our applications. We added Extrae support in XiTAO to trace events of
interest. Figure 6.5 shows the execution of VGG code with 20 threads. We col-
lected traces for two events; Task stealing shown in red and TAOs executed from
native queues, shown in blue.

7. Conclusion
This document describes the final version of the LEGaTO toolchain backend
(LEGaTO runtime system). Compared to the first release (M20) this M30 final
release contains many new and updated components. At the middleware layer,
an improved version of the Redfish API and an improved WebGUI have been in-
troduced. In addition, novel backend drivers to execute on the platform’s FPGAs
have been developed. Next, targeting energy e�cient scheduling, the XiTAO and
OmpSs runtimes have been extensively improved. XiTAO now includes a more
advanced heterogeneous scheduler that can target both performance and min-
imization of energy consumption. XiTAO has also been extended with new sup-
port for executing applications using pipeline parallelism. Finally, the support
for virtualized topologies has been improved. In terms of OmpSs, an improved
version of OmpSs@FPGA has been developed, as has the OmpSs@Cluster run-
time. These exentensions are described in detail in this deliverable. Deliverable
D3.3 also describes many improvements and extensions to our fault tolerance
and security stack. We describe advanced support for GPU Checkpointing and
novel support for FPGA checkpointing. The support for FPGA undervolting has
been improved and is described in the context of CNN Accelerators. On the se-
curity side, we have developed support for Trusted Key Management so that
secrets can be transferred in a trusted manner to applications running inside of
enclaves, such as Intel SGX. The deliverable is completed with tools for devel-
opment support in the context of both OmpSs and XiTAO. For OmpSs, the final

D3.3 Version 1.0 68 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

release of the OmpSs@Linter tool is described. On the XiTAO side, we describe
how XiTAO has been integrated with the Extrae/Paraver toolchain from BSC. Dur-
ing the period M20-M30, we have also worked on the integration of the various
LEGaTO components. The integration of OmpSs’s Nanos6 runtime with XiTAO is
described in deliverable D4.3. D4.3 also includes a description of integrations
between OmpSs with DFiant and MaxJ, and also an integration of Maxeler with
DFiant.

8. References
[1] Grant Allen and Mike Owens. The Definitive Guide to SQLite. Apress, 2010.

[2] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative
technology for cpu based attestation and sealing. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security
and Privacy, volume 13 of HASP ’13. ACM, 2013.

[3] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Kee�e, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. SCONE: Secure linux containers with intel SGX. In 2016
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), OSDI ’16, pages 689–703. USENIX Association, 2016.

[4] Rosa M Badia. Superscalar programming models: making applications plat-
form agnostic. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, 2015.

[5] Barcelona Supercomputing Center. Ompss-2 specification.
https://pm.bsc.es/ftp/ompss-2/doc/spec. (Online; Last access: 11.05,2020).

[6] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Journal of Cryptographic Engineering,
2(2):77–89, 2012.

[7] Gunnar Billung-Meyer. First release of hardware architecture and firmware.
Technical Report D2.2, July 2019.

[8] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias
Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. Securekeeper:
Confidential zookeeper using intel sgx. In Proceedings of the 17th Interna-
tional Middleware Conference, Middleware ’16, pages 14:1–14:13. ACM, 2016.

[9] E. Brickell and J. Li. Enhanced privacy id from bilinear pairing for hardware
authentication and attestation. In IEEE Second International Conference on
Social Computing, SocialCom ’10, pages 768–775, 2010.

[10] ML CIFAR CAFFE. https://github.com/Xilinx/Edge-AI-Platform-
Tutorials/tree/master/docs/ML-CIFAR10-Ca�e. 2019.

[11] E. Castillo, M. Moreto, M. Casas, L. Alvarez, E. Vallejo, K. Chronaki, R. Badia,
J. L. Bosque, R. Beivide, E. Ayguade, J. Labarta, and M. Valero. Cata: Criticality

D3.3 Version 1.0 69 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

aware task acceleration for multicore processors. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 413–422, May
2016.

[12] christmann informationstechnik + medien GmbH & Co.KG. Extended
Redfish API documentation. https://christmann.github.io/recs-redfish-
api/index.html, 2020. (Online; Last access: 12.05.2020).

[13] ML CIFAR10. https://github.com/Xilinx/Edge-AI-Platform-
Tutorials/tree/master/docs/ML-CIFAR10-Ca�e. 2019.

[14] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology
ePrint Archive, 2016(086):1–118, 2016.

[15] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Mar-
tinell, Xavier Martorell, and Judit Planas. Ompss: a proposal for program-
ming heterogeneous multi-core architectures. Parallel Processing Letters,
21(2):173–193, 2011.

[16] Christian Szegedy et al. Going deeper with convolutions. In CVPR, 2015.

[17] Kaiming He et al. Deep residual learning for image recognition. In CVPR,
2016.

[18] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill,
Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi
Ghandi, et al. A configurable cloud-scale dnn processor for real-time ai. In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architec-
ture (ISCA), pages 1–14. IEEE, 2018.

[19] Kenneth Goldman, Ronald Perez, and Reiner Sailer. Linking remote attesta-
tion to secure tunnel endpoints. In Proceedings of the First ACM Workshop
on Scalable Trusted Computing, STC ’06, pages 21–24. ACM, 2006.

[20] Franz Gregor, Wojciech Ozga, Sébastien Vaucher, Rafael Pires, Do Le Quoc,
Sergei Arnautov, André Martin, Valerio Schiavoni, Pascal Felber, and Christof
Fetzer. Trust management as a service: Enabling trusted execution in the
face of byzantine stakeholders. In 2020 50th IEEE/IFIP Int. Conference on
Dependable Systems and Networks (DSN), 2020.

[21] Franz Gregor, Wojciech Ozga, Sébastien Vaucher, Rafael Pires, Do Le Quoc,
Sergei Arnautov, André Martin, Valerio Schiavoni, Pascal Felber, and Christof
Fetzer. Trust management as a service: Enabling trusted execution in the
face of byzantine stakeholders. Technical report, 2020.

[22] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and
Juan Del Cuvillo. Using innovative instructions to create trustworthy soft-
ware solutions. In Proceedings of the 2nd International Workshop on Hard-
ware and Architectural Support for Security and Privacy, HASP ’13, pages
11:1–11:1. ACM, 2013.

[23] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In 2010

D3.3 Version 1.0 70 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

USENIX Annual Technical Conference, USENIX ATC ’10. USENIX Association,
2010.

[24] Intel Corp. Quartus Prime, 2017.

[25] Intel Corporation. Pin. http://www.pintool.org.

[26] Intel Corporation. Attestation Service for Intel Software Guard Exten-
sions (Intel SGX): API Documentation. https://software.intel.com/
sites/default/files/managed/7e/3b/ias-api-spec.pdf, 2018.

[27] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell,
and Frank Mckeen. Intel Software Guard Extensions: EPID Pro-
visioning and Attestation Services. In Intel Whitepaper, 2016.
https://software.intel.com/en-us/blogs/2016/03/09/
intel-sgx-epid-provisioning-and-attestation-services.

[28] Norman P Jouppi, Cli� Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor process-
ing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, pages 1–12, 2017.

[29] KeyCDN. The growth of web page size. https://www.keycdn.com/
support/the-growth-of-web-page-size/, 2017.

[30] Chen Liang, Andrew Ferguson, and Rodrigo Fonseca. Zookeeper Benchmark.
https://github.com/brownsys/zookeeper-benchmark, 2014.

[31] MariaDB. Data-at-rest encryption. https://mariadb.com/kb/en/
library/data-at-rest-encryption-overview/, 2019.

[32] Nicholas D. Matsakis and Felix S. Klock, II. The rust language. In Proceed-
ings of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology, HILT ’14, pages 103–104. ACM, 2014.

[33] Stephen Neuendor�er and Fernando Martinez-Vallina. Building
zynq®accelerators with vivado®high level synthesis. In Proceedings
of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’13, pages 1–2, New York, NY, USA, 2013. ACM.

[34] Oracle Corporation. InnoDB Startup Options and System Variables, MySQL
8.0 Reference Manual. https://dev.mysql.com/doc/refman/8.0/
en/innodb-parameters.html, 2019.

[35] J. M. Perez, V. Beltran, J. Labarta, and E. Ayguadé. Improving the integration
of task nesting and dependencies in openmp. In 2017 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pages 809–818, 2017.

[36] Miquel Pericàs. First release of the task-based runtime. Technical Report
D3.2, July 2019.

[37] Christian Priebe, Kapil Vaswani, and Manuel Costa. EnclaveDB: A Secure
Database Using SGX. In 2018 IEEE Symposium on Security and Privacy, S&P
’18, pages 264–278, 2018.

D3.3 Version 1.0 71 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

http://www.pintool.org
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://www.keycdn.com/support/the-growth-of-web-page-size/
https://www.keycdn.com/support/the-growth-of-web-page-size/
https://github.com/brownsys/zookeeper-benchmark
https://mariadb.com/kb/en/library/data-at-rest-encryption-overview/
https://mariadb.com/kb/en/library/data-at-rest-encryption-overview/
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html

[38] Will Reese. Nginx: The high-performance web server and reverse proxy.
Linux Journal, 2008(173), 2008.

[39] A. Rigo, C. Pinto, K. Pouget, D. Raho, D. Dutoit, P. Martinez, C. Doran, L. Benini,
I. Mavroidis, M. Marazakis, V. Bartsch, G. Lonsdale, A. Pop, J. Goodacre, A. Col-
liot, P. Carpenter, P. Radojković, D. Pleiter, D. Drouin, and B. Dupont de
Dinechin. Paving the way towards a highly energy-e�cient and highly inte-
grated compute node for the exascale revolution: The exanode approach. In
2017 Euromicro Conference on Digital System Design (DSD), pages 486–493,
2017.

[40] Florentino Sainz, Sergi Mateo, Vicenç Beltran, José Luis Bosque, Xavier Mar-
torell, and Eduard Ayguadé. Leveraging ompss to exploit hardware acceler-
ators. In 26th IEEE International Symposium on Computer Architecture and
High Performance Computing, SBAC-PAD 2014, Paris, France, October 22-24,
2014, pages 112–119, 2014.

[41] Sahand Salamat, Behnam Khaleghi, Mohsen Imani, and Tajana Rosing.
Workload-aware opportunistic energy e�ciency in multi-fpga platforms.
arXiv preprint arXiv:1908.06519, 2019.

[42] Behzad Salami, Osman S Unsal, and Adrian Cristal Kestelman. Comprehen-
sive evaluation of supply voltage underscaling in fpga on-chip memories.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 724–736. IEEE, 2018.

[43] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung
Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. From high-level
deep neural models to fpgas. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[44] E Ayguadé X Teruel, P Unnikrishnan, and G Zhang. The design of openmp
tasks. IEEE Transactions on Parallel and Distributed Systems, 20(3):404–418,
2009.

[45] Transaction Processing Performance Council. TPC Benchmark C.
http://www.tpc.org/tpc_documents_current_versions/pdf/
tpc-c_v5.11.0.pdf, 2010.

[46] Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-SGX: A practical
library OS for unmodified applications on SGX. In Proceedings of USENIX
ATC, 2017.

[47] Osman Unsal. Architecture definition and evaluation plan for LEGaTO’s
hardware, toolbox and applications. Technical Report D2.1, July 2019.

[48] Cats vs Dogs. https://github.com/Xilinx/Edge-AI-Platform-
Tutorials/tree/master/docs/CATSvsDOGs. 2019.

[49] Wesley Wong. Stunnel: SSLing Internet Services Easily. White paper, SANS
Institute, 2001.

[50] Xilinx, Inc. Vivado High-Level Synthesis, September 2017. http://www.
xilinx.com/hls.

D3.3 Version 1.0 72 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.xilinx.com/hls
http://www.xilinx.com/hls

[51] Y. Yu, H. Wang, B. Liu, and G. Yin. A trusted remote attestation model based
on trusted computing. In 12th IEEE International Conference on Trust, Se-
curity and Privacy in Computing and Communications, TrustCom ’13, pages
1504–1509, 2013.

[52] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shu�enet: An ex-
tremely e�cient convolutional neural network for mobile devices. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 6848–6856, 2018.

D3.3 Version 1.0 73 / 73

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

	Executive Summary
	Introduction
	Middleware and backend drivers
	Redfish API
	Web GUI
	RECS Platform Drivers
	SLiC API

	Energy-efficient task-based runtime
	XiTAO
	XiTAO software topologies
	The XiTAO heterogeneous scheduler
	Support for Pipeline Parallelism

	OmpSs
	OmpSs@FPGA
	OmpSs@Cluster

	Runtime support for Fault Tolerance and Security
	GPU Checkpointing
	Code Release
	Paper Publication

	FPGA Checkpointing
	FPGA Unvervolting for CNN Accelerators
	Introduction
	Experimental Results: Voltage Behavior Analysis
	Power-reliability Trade-off for Reduced-voltage FPGA-based CNN Accelerators
	Frequency Underscaling

	Trusted Key Management
	Approach: A Trusted Management Service
	Evaluation: Micro-benchmarks
	Evaluation: Macro-benchmarks

	Runtime Support for Application Development
	OmpSs@Linter as a debug tool
	OmpSs Linter
	Evaluation: Benchmarks
	Evaluation: Results

	Extrae support in XiTAO

	Conclusion
	References

