
D3.4 “REPORT ON EVALUATION AND OPTIMIZATIONS IN
THE RUNTIME STACK”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline 02 Nov 2020

Dissemination Level Public

Nature Report

Author Miquel Pericàs (CHALMERS)

Contributors Do Le Quoc (TUD), Xavier Martorell (BSC), Leonardo
Bautista-Gomez (BSC), Behzad Salami (BSC), Miquel Pericàs
(CHALMERS), Mustafa Abduljabbar (CHALMERS), Pirah Noor
Soomro (CHALMERS), Jing Chen (CHALMERS), Gunnar
Billung-Meyer (CHR), Saber Nabavi (BSC), Paul Carpenter (BSC)

Reviewers Valerio Schiavoni (UNINE), Nils Voss (Maxeler)

The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme

under the Grant Agreement No 780681.

D3.4 Version 1.0 1 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Ref. Ares(2020)7241655 - 01/12/2020

https://legato-project.eu/

Change Log

Version Description of Change

1539 2020-10-23, File created

1551 2020-10-27, Intro to FPGA checkpointing

1553 2020-10-27, FPGA undervolting results

1569 2020-10-28, SGX framework comparison added

1583 2020-10-29, Add XiTAO energy and pipeline parallelism results

1589 2020-10-30, Add XiTAO topologies evaluation

1620 2020-11-03, Add execute summary

1646 2020-11-06, List Valerio as a reviewer and update exec summary

1672 2020-11-10, Add an introduction

1679 2020-11-11, Update the introduction

1680 2020-11-11, Conclude the �nal deliverable

1689 2020-11-12, Include the SLRUM-RECS integration

1691 2020-11-12, Update introduction and summary to re�ect changes

1831 2020-11-30, Apply internal edits by Osman

This log re�ects actual revision numbers from SVN (version control software used).

D3.4 Version 1.0 2 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Index

1 Executive Summary . 8

2 Introduction . 9

3 Middleware integration and improvement . 10
3.1 SLURM integration with the middleware . 10

3.1.1 Slurm con�guration . 10
3.1.2 Job descriptions . 11
3.1.3 Job �ow . 11

3.2 Improvement of hardware management and APIs . 11

4 Energy-e�cient task-based runtime . 12
4.1 XiTAO . 13

4.1.1 Evaluation of XiTAO Software Topologies . 13
4.1.2 The XiTAO heterogeneous scheduler . 17
4.1.3 Support for Pipeline Parallelism . 20
4.1.4 Pipelined execution of VGG-16 . 20

4.2 OmpSs . 21
4.2.1 OmpSs@FPGA, OpenCL and CUDA . 21
4.2.2 OmpSs@Cluster . 26
4.2.3 Smart-Mirror/OmpSs@Cluster . 26

5 Runtime support for Fault Tolerance and Security . 30
5.1 FPGA Checkpointing . 30

5.1.1 Host-based Checkpointing . 31
5.1.2 Checkpointing partial work of the FPGA task 32
5.1.3 Environment . 35
5.1.4 Applications . 35
5.1.5 Host-Based FTI . 36
5.1.6 Partial FPGA Task Checkpointing . 40

5.2 Unvervolting High-Bandwidth Memories . 40
5.2.1 Structure of HBM . 40
5.2.2 Hardware Under Test . 41
5.2.3 Power Measurement . 42
5.2.4 Reliability Analysis Through Accessing Data Sequentially 44
5.2.5 Reliability Analysis Per Pseudo Channel . 44

5.3 Intel SGX Framework Comparison . 46
5.3.1 Performance Comparison . 47
5.3.2 Performance Metrics Analytics . 50

6 Conclusion . 52

D3.4 Version 1.0 3 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

7 References . 52

D3.4 Version 1.0 4 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

List of Figures

3.1 Job description, submission to slurm, and interaction with RECS Master 12

3.2 Web-GUI of the RECS_Master in new design . 13
4.1 Sample dependency graphs for the analyzed applications. 14
4.2 SparseLU parallel execution time on 8x6-core AMD - Abu Dhabi and 4x18-core Intel

Broadwell as you increase the task input size in bytes. Matrix size = 128 x 128 blocks. 15
4.3 Time to solution for di�erent mesh sizes to compute 5-point stencil on two archi-

tectures. Iteration count = 2000 . 16
4.4 Comparison of the cumulative work/other distribution, and the scheduling trace

for a Stencil (compute and copy) tasks. The denoted tasks have a single software
topology address. Mesh resolution = 2048× 2048. 16

4.5 Energy comparison of three synthetic benchmarks on Intel Haswell. 18
4.6 Energy comparison results of three applications on two platforms. MAX & MIN in

x-axis of Figure 4.6a means that on TX2 Denver cluster’s frequency is maximum
and A57 cluster’s frequency is minimum. 19

4.7 Heat task distribution with di�erent resource width on Intel Haswell. 20
4.8 Overview of Pipelined CNN in XiTAO. 20
4.9 Execution timeline of VGG 16 on Nvidia Jetson TX2. 21
4.10 Performance of OmpSs@OpenCL/CUDA Matrix Multiplication on the Intel Arria 10

FPGA and the Nvidia GeForce GTX Titan X GPU . 23
4.11 Performance of OmpSs@OpenCL/CUDA Matrix Multiplication on the Intel Stratix

10 FPGA and the Nvidia GeForce RTX 2070 SUPER GPU 24
4.12 Online power consumption on the matmul experiments with OmpSs@FPGA 25
4.13 Performance and energy-e�ciency with OmpSs@FPGA matrix multiplication . . . 25
4.14 Comparison of the performance of OmpSs-1 andOmpSs-2matrixmultiplication on

the ZCU102 FPGA development kit, with the new OmpSs-2 directory/cache support 26
4.15 Comparison of the performance of OmpSs-2 matrix multiplication, with the new

OmpSs-2 directory/cache support, OmpSs-2 with Prefetching and OmpSs-2 with
Uni�ed Memory . 26

4.16 Single node implementation of the object detection part of the smart mirror. . . . 28
4.17 Initialization step of the OmpSs-2@Cluster implementation of of the object de-

tection part of the smart mirror. 28
4.18 Main loop of the OmpSs-2@Cluster implementation of the object detection part

of the smart mirror. 29

5.1 Example of host-based checkpointing . 32
5.2 Implementation of Host-based checkpointing for the Jacobi Solver application . . 32
5.3 FPGA copies data to memory. 33
5.4 Host performs a checkpoint of partial FPGA data. 33
5.5 Implementation of Partial work Checkpointing for the Jacobi Solver application . . 34

D3.4 Version 1.0 5 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5.6 Performance comparison of Jacobi Solver implementation with FTI using L4 check-
point and without FTI support . 37

5.7 Performance comparison of Jacobi Solver implementation with FTI using L2 check-
point and without FTI support . 38

5.8 Performance comparison of Jacobi Solver implementation with FTI using L3 check-
point and without FTI support . 38

5.9 Performance comparison of YUV Filter implementations with and without FTI sup-
port . 39

5.10 Performance comparison of Jacobi Solver implementation with partial FPGA task
checkpointing and the non-FTI version . 39

5.11 General structure of an HBM-enabled Device. 41
5.12 HBM Interface and internal organization of XCVU37P. 41
5.13 HBM stack power saving by undervolting (nominal voltage is 1.2V) 43
5.14 Operating current of HBM by undervolting (nominal voltage is 1.2V) 43
5.15 Active portion of the memory under load. Vertical axis shows how much capaci-

tance is being charged/discharged every second. 43
5.16 Percent of data bits in each stack that are st1 or st0 with undervolting. 44
5.17 Fault count (in Millions) for AXI ports (and their corresponding PCs). Top half is

for st1 and bottom half is for st0. Lower numbers mean a portion of memory is
healthier and more reliable. 45

5.18 Number of PCs that can be used under di�erent thresholds (showing the sum of
st0 and st1 faults). Bigger numbers mean larger portions of memory are accessible. 46

5.19 The throughput comparison between native Redis and Redis with di�erent SGX
frameworks. The total memory usage of Redis is set to di�erent sizes of 78 MB,
105 MB, and 127 MB. 48

5.20 The latency comparison between native Redis and Redis with di�erent SGX frame-
works. The total memory usage of Redis is set to di�erent sizes of 78 MB, 105 MB,
and 127 MB. 48

5.21 The throughput and latency comparison between native Redis and Redis with dif-
ferent SGX-frameworks. The total memory usage of Redis is set to 78 MB. 48

5.22 The detailed statistics of monitored performance metrics of native Redis and Re-
dis running inside SGX enclaves using di�erent SGX frameworks. The experiments
are conducted with di�erent con�gurations: 8 connections and 78 MB database
size (8 C-S); 8 connections and 105 MB database size (8 C-L); 320 connections and
78MB database size (320 C-S); 320 connections and 105MB database size (320 C-L);
580 connections and 78 MB database size (580 C-S); and for 580 connections and
105 MB database size (580 C-L). 49

D3.4 Version 1.0 6 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

List of Tables

4.1 Hardware structure of the used machines. In parenthesis: number of hardware
threads that share memory/cache. 13

4.2 Summary of evaluated runtime strategies . 18
4.3 CPU and GPU utilization of the single node and the OmpSs-2@Cluster implemen-

tations running alone. 30
4.4 Frame rate and power consumption of whole smart mirror application. 30

D3.4 Version 1.0 7 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1. Executive Summary
In this deliverable, we highlight the evaluations and optimizations on top of the �nal release of
the LEGaTO backend and middleware.

On the middleware side, we have integrated the Slurm workload manager with the RECS Master.
This approach allows users to request resources using Slurm for jobs to be run in the cluster.
Also, more resilience against data loss and enhanced recon�guration capabilities have been
promoted in the case of a power shutdown of the RECs box server.

In the backend, XiTAO software topologies have been validated using SparseLU and Heat di�u-
sion benchmarks, and have shown adaptivity and consistent speedup compared to traditional
locality-aware and work-stealing schemes. Thorough energy-e�cient scheduling evaluation is
presented for VGG16, Heat and SparseLU. The evaluation is carried out on both asymmetric and
symmetric platforms, and is compared to energy-e�cient and work-stealing schedulers. Overall,
from 31% to 75% energy reduction is achieved in comparison to the baseline schedulers.

Further optimizations are developed on top of OmpSs backend. The performance of OmpSs@FPGA
and CUDA is showcased for dense matrix multiply that appears in applications such as Con-
volutional Neural Networks (CNNs). Comparison of energy/performance gains using the Xil-
inx ZCU102 development kit have shown an e�ciency of up to 7.32 GFlops/W using 2xIP core
instances. The distributed variant of the OmpSs, i.e., OmpSs@Cluster is evaluated using the
Smart-Mirror use-case. Both the single and OmpSs-2@Cluster implementations hit the limit
frame rate of the camera, which is 30 FPS. The energy consumption was 25W for the single node
implementation, using the OmpSs-2@Cluster this dropped to 13W for the �rst node of which
10W is used for the processing of the raw captured image (i.e. scaling), and total of 17W for the
second Xavier node.

Several evaluations of fault tolerance techniques are presented. Undervolting is demonstrated
as an e�ective energy saving technique. Previously we had focused on the SRAM-based memo-
ries of FPGAs, while in this deliverable we extend this work to include High-Bandwidth Memory
(HBM). Experimental results show a 2.3× energy saving for HBM at all bandwidth utilizations.
The checkpointing library is now capable of checkpointing CPU, GPU and FPGAs under the same
API in a completely transparent fashion. It has demonstrated the low-overhead of our approach,
making heterogeneous computing more resilient and fault-tolerant. Last but not least, we pro-
vide an extensive performance comparison between state-of-the-art Intel SGX frameworks using
our monitoring tool TEEMon, the �rst continuous performance monitoring and analysis tool for
TEE-based applications.

By combining the various techniques introduced at the runtime and �rmware levels in deliver-
ables D3.3 and D3.4, we can achieve an order of magnitude reduction in energy consumption.
Hence, we are con�dent that the energy e�ciency goals of LEGaTO have been achieved.

D3.4 Version 1.0 8 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

2. Introduction
In the previous deliverables of work package 3 "Tool-Chain Back-End", we have motivated and
described the implementations behind the LEGaTO task-based runtime environments on het-
erogeneous platforms featuring asymmetric CPUs, GPUs and FPGAs. These implementations
target achieving up to 10× energy e�ciency on the next generation IoT, Edge and HPC appli-
cations, as well as addressing security and fault-tolerance concerns. Thanks to the enhanced
middleware interface, the recon�gurable hardware resources provided by Maxeler and Christ-
mann are available to validate the backend contributions. Therefore in this �nal deliverable, we
report on evaluations and optimizations for energy-e�ciency, security, and resilience on top of
the �nal release of the task-based runtime (D3.3 [25]). In general, this document highlights

1. Optimizations added to techniques described in D3.3,

2. Detailed evaluation of techniques fromD3.3 or the new optimizations developed after D3.3,
and

3. Incremental proposals that pertain to the parts in D3.3.

In Section 3.1, we describe and showcase the Slurm-RECS integration, which makes the hetero-
geneous LEGaTO hardware resources available to the de facto scalable cluster management and
job scheduling utility. Section 3.2 demonstrates the robustness and usability of the RECS_Master
management software and RedFish API to facilitate integration with the LEGaTO backend.

Section 4 focuses on the two runtimes researched in LEGaTO: the experimental XiTAO runtime
and the production OmpSs runtime. We start by listing the optimizations and evaluations of
the XiTAO backend in Section 4.1. These include an evaluation of the XiTAO topologies made
available through dynamic locality-aware scheduling. Further, we include a thorough analysis
of the energy-aware scheduler (EAS) as well as the pipeline parallelism. The techniques have
been applied on representative HPC and machine learning benchmarks, running on an edge
NVIDIA TX2 development board, one of the target platforms of the LEGaTO project.

The energy e�ciency of the OmpSs backend is evaluated in Section 4.2. Starting with sec-
tion 4.2.1, we evaluate OmpSs@FPGA & CUDA by executing a set of matrix multiplication exper-
iments on the Xilinx ZCU102 development kit, with 4 ARM A53 cores and an integrated XCZU9EG
FPGA. Each matrix multiplication experiment consists of 20 executions of matrix multiply opera-
tions, on a matrix of 2816x2816 single precision �oating point elements. The matrix is blocked in
tiles of 256x256 values. Insights are made about the performance/energy tradeo�s when tuning
the amount of IP and CPU resources allocated to the described workload. The OmpSs-2@Cluster
implementation is analyzed using the Smart Mirror use case in Section 4.2.2. OmpSs-2@cluster
allows the CPU and GPU compute to be divided among two nodes to increase the frame rate
with relatively lower increase in power consumption. This was possible using the annotations
described in Section 4.2.3.2 at minimal development cost.

Section 5.1 gives more detail on the methodology followed to implement FPGA checkpointing.
The work is separated into two di�erent main approaches when it comes to implementing FTI
functionality: host-based checkpointing and checkpointing of partial data from the FPGA task.
We perform the experiments on a cluster of 4 Xilinx Zynq-7000 SoC nodes via the OmpSs@FPGA

D3.4 Version 1.0 9 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

environment. Comparisons by enabling and disabling the Fault Tolerance Interface (FTI) library
are performed for YUV �lter, Jacobi Solver and K-Means Clustering.

Then, in Section 5.2, we focus on undervolting High-Bandwidth Memory (HBM). It is known that
modern high-performance devices employ HBM in order to meet high memory bandwidth re-
quirements, but consume a substantial portion of the chip’s power budget. By means of un-
dervolting, our measurements show that the guard-band region in our HBM modules is 19% of
the nominal voltage; bringing the supply voltage down to that region provides a 1.5× power
saving gain for all bandwidth utilizations. Pushing voltage down further by 11% provides 2.3×
power saving at the cost of unwanted bit �ips. We explore and characterize the rate and type
of these bit �ips and show that the majority of them are clustered together in less than 16% of
the memory’s entire address space.

Finally, Section 5.3 analyzes the overheads by the developed security mechanisms based on
TEEs, e.g., Intel SGX or ARM TrustZone. The performance monitoring framework TEEMon [16],
which has been reported in Deliverable D4.2, is used tomeasure the overhead of Intel SGX frame-
works such as SGX-LKL [26], and Graphene-SGX [29] and as well as our own toolchain SCONE [4].
The depicted performance metrics are helpful for developers using the SGX framework in order
to identify performance bottlenecks especially considering scarce resources such as EPC (En-
clave Page Cache) memory and the expensive enclave exit and enter operations (due to system
calls).

3. Middleware integration and improvement

3.1. SLURM integration with the middleware

We have integrated the Slurm workload manager [32] with the RECS Master service. This ap-
proach allows users to request resources using Slurm for jobs to run in the cluster. The Slurm
manager selects the nodes where jobs can be run, starts the nodes, run the jobs, and stops the
nodes upon completion. After that, the nodes can be used by the next job submitted.

3.1.1. Slurm con�guration

The con�guration of Slurm is provided in the etc/slurm.conf �le. It provides the list of nodes
available in each baseboard, and their hardware characteristics, that will be used in user jobs to
decide which nodes should be selected. A baseboard is one of the slots available in the hard-
ware system to allocate each one of the computing nodes. This information can be obtained at
installation time, by using the Red�sh API to obtain the hardware inventory information avail-
able in the target system.

For example, in a common Slurm �le, we have:

• NodeName=BB_1_[0,2-15] Sockets=1 CoresPerSocket=4 ThreadsPerCore=1 Feature=ARM,bigLITTLE,hasGPU

• NodeName=BB_2_[0-7] Sockets=2 CoresPerSocket=2 ThreadsPerCore=1 Feature=x86_64

It describes a collection of 15 nodes, named BB_1_0 to BB_1_15, with the exception of the non-
existing BB_1_1. Those nodes have 1 socket (chip), with 4 ARM cores, and a single thread per
core. Additionally, each core has several big cores and additional LITTLE cores, and hosts a
GPU. The Slurm features are arbitrarily set per organization, so they are adapted to the target
environment.

D3.4 Version 1.0 10 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

The second collection of nodes (BB_2_0 to BB_2_7) have 2 sockets with 2 cores per socket, and
their hardware architecture is x86_64.

The Slurm con�guration �le also groups nodes in partitions:

• PartitionName=debugNodes=BB_1_0,BB_1_[2-15],BB_[13-18]_[0-7] OverSubscribe=EXCLUSIVE
Default=YES MaxTime=INFINITE

This describes the debug partition, with the collections of nodes BB_1_*, BB_13_* to BB_18_*, not
allowing oversubscribing, and with no execution time limit.

3.1.2. Job descriptions

Slurm jobs are annotated with the node characteristics requested. In order to do this we use
the Slurm node features speci�ed above in the node de�nitions, through the constraint �eld:

#!/bin/bash
#SBATCH -N 4
#SBATCH --constraint=ARM
#SBATCH -o test-%j.out
#SBATCH -e test-%j.err
... job commands ...

3.1.3. Job �ow

Nodes are turned o� by default. When a job is submitted, Slurm takes care of selecting the
nodes to be awakened and powers them up using the Red�sh API. Once they are up and ready
(running the slurm daemon), the job is launched. At job termination, and after a short idle
period, the nodes are shutdown, and stay o� till they receive a new job assignment.

This is implemented with a series of scrips executed by slurm, that contact the RECS|Box man-
agement system through its webservice. Figure 3.1 shows the high-level view of this environment.

The user submits slurm jobs using batch job scripts specifying the desired conditions that the
nodes must accomplish. In the example, the user requests nodes that are described as ARM,
bigLITTLE, and hasGPU. Slurm contacts the RECS Master server to power up and run the jobs. The
user can follow the job execution using the Slurm tools. squeue shows the jobs enqueued, some
of which may be running, others waiting for resources. Finally, sinfo that shows the partitions
available, and the state of the nodes belonging to them.

3.2. Improvement of hardware management and APIs

In the course of the middleware evaluation, its robustness and usability were continuously im-
proved to allow a seamless integration with the rest of the stack.

The RECS_Master management software is the main authority for controlling the hardware re-
sources and communication infrastructure within the RECS|Box and t.RECS servers. Therefore,
it is also responsible for con�guring the Ethernet and PCIe switches to separate the network
between the microservers with VLANs and compose nodes by managing PCIe functions, respec-
tively. In contrast to all other data held by the RECS_Master, the VLAN and PCIe con�guration are
no physical property of the hardware and thus volatile in terms of power loss. Hence, the con�g-
uration data has to be persisted to be recovered after the power is back again. While the obvious

D3.4 Version 1.0 11 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 3.1. Job description, submission to slurm, and interaction with RECS Master

and common reason for power-loss is a reboot or shutdown of the RECS|Box or t.RECS platforms,
the former system has a second cause. Due to its blade-like architecture, the RECS|Box allows
hot-plugging whole baseboards with multiple microservers and dedicated communication in-
frastructure on it. Both scenarios are now protected against data loss by persisting volatile
information. When the power is on again, the RECS_Master recon�gures all Ethernet and PCIe
switches of a baseboard or the whole system by controlling the �rmware layer. That way, the
VLAN con�guration and composed nodes are in the same state as before the power loss. In ad-
dition, the whole Ethernet management architecture within the RECS_Master and �rmware was
reworked, by building a fabric over all Ethernet switches within the RECS|Box and only present-
ing one virtual switch to the upper layers through the Red�sh API and WebGUI.

The Red�sh API was also revised by changing the internal generation of endpoint URLs. This
was done with regard to an easier maintenance and testability of the implementation within
the RECS_Master and a more consistent presentation to the upper layers and users of the API.
Before this rework, some resources had more than one endpoint URL depending on the context
it was in. One example is the high-speed/low-latency interface, which is the physical part of a
microserver, PCIe device or PCIe port, where it connects to the high-speed/low-latency commu-
nication infrastructure, analogue to an Ethernet interface. Within the node composition process,
those interfaces can also be the endpoints of a con�gured connection. Before the rework of the
URL handling, such an interface could be called by two di�erent URLs. This was now changed
by assigning only one unique URL to a resource, which corresponds to its physical a�liation.
The complete documentation of the Red�sh API implementation of the RECS_Master can be
accessed online at Github [12].

Furthermore, the whole Web-GUI of the RECS_Master was re-designed, now supporting recent
Java versions. The main framework for the web interface, Vaadin1, was also upgraded from ver-
sion 7 to 17, because version 7 was end-of-life. The new Web-GUI now conforms to more modern
web standards and features responsive design, for a smoother user experience (see 3.2).

4. Energy-e�cient task-based runtime
This chapter describes our e�orts to develop runtime technologies targeting scalability and high
energy-e�ciency. We present the approach taken using the XiTAO runtime �rst, and then the
developments and evaluation using OmpSs.

1https://vaadin.com/

D3.4 Version 1.0 12 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 3.2. Web-GUI of the RECS_Master in new design

Table 4.1. Hardware structure of the used machines. In parenthesis: number of hardware threads that share
memory/cache.

Architecture Sockets Cores/socket Threads/core Memory(GB) L3(MB) L2(KB) L1d(KB)
AMD Abu Dhabi 4 - 2 nodes each 6 2 8(6) 6(6) 2048(2) 16(1)

Intel Broadwell 4 18 1 768(18) 45(18) 256(1) 32(1)
Intel Haswell 2 10 1 256(10) 24(10) 256(1) 32(1)

4.1. XiTAO

XiTAO is a lightweight layer that provides a task-parallel and data-parallel interface using mod-
ern C++ features. It serves as a backend runtime along side OmpSs in the LEGaTO toolchain.
As mentioned in D3.3 [25], the design goals of XiTAO are to be low-overhead and to serve as a
development platform for testing scheduling and resource management algorithms.

4.1.1. Evaluation of XiTAO Software Topologies

4.1.1.1. Methodology

This section describes the experimental methodology used to evaluate the contributions of of
the XiTAO topologies presented in D3.3. LAGRES is integrated into XiTAO1, a DAG runtime system
implemented on top of C++11. XiTAO is designed to �exibly evaluate scheduling policies and
already features moldable tasks, i.e., those that can be mapped to a single or multiple threads.
This facilities themapping ofN (coarsened tasks) toM (elastic resources) [24]. However, LAGRES
is decoupled from the runtime implementation.

Platforms:
Experiments are performed on three architectures: AMD Abu Dhabi, Intel Broadwell and
Intel Haswell with the structure described in Table 4.1. The AMD Abu Dhabimachine has 4
AMDOpteron processors (6348), each having 2 chips, with 6 cores each, for a total of 48 cores. The

1https://github.com/mpericas/xitao.git

D3.4 Version 1.0 13 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Types

[0,0]

[0,0] [0,1] [1,0]

[0,0] [0,1] [1,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,1]

[0,0] [0,1] [1,0] [1,1]

jacobi2Dcopy2D

(a) 2 iterations of a Stencil
2D DAG

Types

[0,0]

[0,2][0,4] [2,0] [4,0]

[2,2] [4,2][2,4] [4,4]

[2,2]

[2,4] [4,2]

[4,4] lu0

[4,4] bmod

fwd

bdiv

(b) SparseLU DAG of a 4x4
block matrix

Figure 4.1. Sample dependency graphs for the analyzed applications.

other twomachines belong to academic research computing centers. One node on eachmachine
is used exclusively (i.e. with no other jobs co-scheduled on the node during the experiments).
The nodes of the Intel Haswell cluster have 2 Xeon E5-2650v3 processors, with 10 cores each,
for a total of 20 cores. Also, we use a “large memory” Intel Broadwell cluster, where each
node contains 4x18 Xeon E7-8860v4 cores, for a total of 72 cores.

Baseline Schedulers:
In the following, we describe and justify the baseline schedulers used.
Random Work-Stealing Scheduler (RWSS): it is based on distributed work-stealing, where each
worker greedily tries to reduce idleness by fetching work from victim queues. It has been for-
mally introduced in [8] and has appeared in several parallel task-based libraries such as Cilk [7],
MassiveThreads [21] and Intel TBB [17].
Locality-AwareWork-Stealing Scheduler (LAWS): this scheduler is introduced in [11]. It is helpful
in this evaluation as it is an incremental improvement over RWSS. Also, it provides work-stealing
within the NUMA node of task’s initialization, and tries to optimize cachemisses within the node.
Using ideas from LAWS, we allow work-stealing within the inclusive partitions set where the task
has been initialized, and we greedily �ll in the resource partitions to construct cache-friendly
subtrees of the DAG.
Locality-AGnostic Scheduler (LAGS): we also evaluate the proposed scheduler without the e�ect
of moldability. Partition widths are persistently set to 1. Tasks are initialized and executed in
the NUMA node mapped by their STA. Local stealing is preferred, then global stealing requests
are ful�lled when the stealing thread reaches idleness threshold and the steal that reduces the
cost function (as per the model) is chosen.
LAGRES: the adaptive locality scheduler based on XiTAO topologies introduced in D3.3.

Applications:
Iterative DAG - HEAT: we leverage a DAG implementation to compute heat di�usion on a 2D grid.
One of the iterative numerical methods to achieve this is to use 2D Jacobi stencil [15]. We use
a 5-point stencil and create dependencies between the neighbor nodes (see Figure 4.1a). The
approach involves computing the stencil in a compute task, and copying out the update in a copy
task. The DAG is iteratively executed for a prede�ned number of iterations. For STA speci�cation,
we use the coordinates of block of mesh points involved in a task.
Recursive DAG - SparseLU: we port a SparseLU benchmark from the Barcelona OpenMP Tasks

D3.4 Version 1.0 14 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

24Kb (< L1)

RWSS
LAWS
LAGS
LAGRES

96Kb (< L2) 1536Kb (< L2) 6144Kb (L3)

(a) AMD - Abu Dhabi

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

24Kb (< L1) 96Kb (< L2) 1536Kb (< L3) 6144Kb (< L3)

(b) Intel - Broadwell

Figure 4.2. SparseLU parallel execution time on 8x6-core AMD - Abu Dhabi and 4x18-core Intel Broadwell as
you increase the task input size in bytes. Matrix size = 128 x 128 blocks.

Suite [14]. This benchmark computes an LUmatrix factorization over sparse matrices. Thematrix
is composed of NxN blocks, each of which has a pointer to a sub-matrix of size MxM. Load-
imbalance is evident due to the sparsity of the matrix. For each phase of the LU algorithm, a
task is spawned for non-empty blocks (see Figure 4.1b) . For STA speci�cation, the matrix block
indices are used.

4.1.1.2. Evaluation

In this section, we share the obtained empirical results comparing LAGRES to the baseline
schedulers. Then, we analyze the achieved performance gains by showing the schedule map
for LAGRES pertaining to a speci�c task type and location, and how locality is preserved adap-
tively. Also, we explain the gains by relating them to the proportion of the cumulative work time
to the overall scheduling time.

Empirical Results:

Figure 4.2 depicts the SparseLU normalized (to max) execution time of the evaluated schedulers
factorizing a double-precision 512x512 matrix, block dimension size of 32, 64, 256 and 512, respec-
tively. The block sizes are varied to span di�erent cache-levels in the system . The experiments
are run on 48 threads (AMD Abu Dhabi) and 72 threads - (Intel Broadwell). The layout
description corresponds to the sharing levels of the underlying architecture, and the sharing is
enabled to the socket level. In Figure 4.2a, we use 1, 2, 6, 12, whichmaps to L2, L3 and socket-level
sharing. With the exception of the smallest case (< L1), it is noted that the proposed scheduler
in both its variants (LAGS and LAGRES) performs better than the baselines. Enabling elasticity
provides a considerable improvement when L3 cache size is exceeded. According to our data,
the adaptive socket level sharing provides higher streaming bandwidth due to interleaving over
2 NUMA nodes for the tasks that bene�t from this (one with low arithmetic intensity), otherwise,
the reduction in idle-time due to lower cost of molding to larger widths in the cases of tasks with
higher arithmetic intensity. LAGS has an almost similar behavior to LAWS, as themodel does not
help much in improving over LAWS when resources are not properly utilized with moldability.
The Intel Broadwell exhibits less cache/memory access heterogeneity due to less sharing.
This limits the analysis of LAGRES to a few partitions, and yields to local/global work-stealing
scheduler. Hence, the performance is bounded by LAWS with the exception of the larger cases
when streaming provides an advantage. Note that the slight improvements seen for task sizes
of (1536Kb and 6144Kb) are factors of 10s and 100s of seconds.

D3.4 Version 1.0 15 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1024x1024 2048x2048 4096x4096
Problem size

0

2

4

6

8

10

Ti
m

e
(s

)

RWSS
LAWS
LAGS
LAGRES

(a) AMD Abu Dhabi 8x6 threads

1024x1024 2048x2048 4096x4096
Problem size

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)

RWSS
LAWS
LAGS
LAGRES

(b) Intel Haswell 2x10 threads

Figure 4.3. Time to solution for di�erent mesh sizes to compute 5-point stencil on two architectures. Iteration
count = 2000

RWSS LAWS LAGS LAGRES
Schedulers

0

10

20

30

40

50

60

70

80

To
ta

l C
PU

 t
im

e
(s

)

Work
Other

(a) Stencil - Intel Haswell

0 500 1000 1500 2000
Iteration number

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48

Th
re

ad
 ID

200

400

600

800

1000

1200

1400

(b) Stencil (Compute) - AMD Abu
Dhabi- tasks data pinned to
Node 6 - leader thread = 42

0 500 1000 1500 2000
Iteration number

0

2

4

6

8

10

12

14

16

18

20

Th
re

ad
 ID

200

400

600

800

1000

1200

(c) Stencil (Copy) - Intel
Haswell- tasks data pinned to
Node 0 - leader thread = 0

Figure 4.4. Comparison of the cumulative work/other distribution, and the scheduling trace for a Stencil
(compute and copy) tasks. The denoted tasks have a single software topology address. Mesh resolution =
2048× 2048.

It is also important to stress test LAGRES by conducting a scalability analysis to assess whether
checking the model incurs an overhead that hinders performance gains. Figure 4.3 shows the
execution time of the stencil application comparing the di�erent schedulers as the resolution
of the mesh is increased (resulting in more smaller tasks). The case of 1024×1024 yields around
128x128 mesh points per tasks after decomposition. In essence, this is too �ne grain not to
observe a degradation compared to LAGS and LAWS due to the slight overhead that can diminish
the bene�ts for smaller-sized tasks. This is also in line with the results obtained in SparseLU
(Figure 4.2). The e�ect of resource elasticity contributed by LAGRES becomes especially clear
as the problem size is increased across the 2 architectures. In the case of AMD Abu Dhabi
depicted by Figure 4.3a, we observe improvements of at least 30% over LAWS and RWSS in the
2048× 2048 case. The behavior is sustained on Intel Haswell shown by Figure 4.3b.

Analysis:
One of the important attributes to be analyzed in task-based runtime scheduling is the pro-
portion of work-time, that is time spent executing the tasks, to other scheduling activity, which
includes queue management, scheduling logic, dependency checks, idleness, etc. In Figure 4.4a,
we show the cumulative work time, that is the thread total time x the number of threads vs. the
total other time on Intel Haswell for the stencil application 2048 × 2048. The reduction in
time-to-solution incurred by LAGRES mostly manifests as reduction in work time. According to
our pro�ling data, the adaptation to locality constrains by LAWS explains the increase of “other”
time. To see LAGRES in action, we display the scheduling trace for the compute and copy tasks

D3.4 Version 1.0 16 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

of the stencil. We pick a sequence of tasks dependencies that are initialized on the nodes high-
lighted by the Figures 4.4b and 4.4c. To reduce clutter, we omit the selected resource width and
just show the leader thread for the selected resource partition. For the compute task executed
on AMD Abu Dhabi, we can see that in some instances, LAGRES still chooses to schedule away
from the data location, which appears to be an e�ective technique that re�ects in reduction
of time-to-solution even though data locality is not strictly preserved. However, this is not the
case in the stencil copy task, where streaming bandwidth, and reduction of cache latency are
crucial to achieve higher throughput. Hence, LAGRES is able to discover these attributes (i.e.
the computational requirements) adaptively and without prior assumption about the nature of
the workload.

4.1.2. The XiTAO heterogeneous scheduler

4.1.2.1. Energy E�cient Task Scheduler

Based on the proposal of energy e�cient task scheduler runtime in D3.3, we conduct more real
applications evaluation of energy savings on two di�erent platforms. The details of platforms
and applications are introduced as following:

Asymmetric platform. NVIDIA Jetson TX2 features a dual-core NVIDIA Denver 2 64-bit CPU and
a quad-core ARM A57 Complex (each with 2 MB L2 cache). The board is set to MAX-N nvpmodel
mode. The Denver and the A57 cores implement the ARMv8 64-bit instruction set and are cache
coherent. The two clusters, i.e. Denver and A57, support the same range of frequencies and
the platform only allows cluster-level frequency changes. Note that the A57 cluster cannot be
powered o�.

Symmetric platform. It features a dual-socket 10-core Intel 2650v3 (code-named “Haswell”)
node and runs Linux version 3.10.0. RAPL is used to build the power pro�les and measure the
energy consumption on the platform.

Image Classi�cation (Darknet-VGG-16 CNN) is a 16-layered deep neural network. It is imple-
mented as a fork-join DAG that spans all the layers. Each task of the DAG performs GEneral
Matrix Multiplication (GEMM) operations on a sub-partition. No task criticality assignment ex-
ists in VGG-16 since all the tasks within a layer have the same properties and dependencies.

Heat Di�usion is implemented on a 2D grid by using one of the iterative numerical methods:
2D Jacobi stencil. It involves computing the stencil as compute-bound tasks, and copying out
the update as memory-bound tasks. The DAG is iteratively executed for a prede�ned number of
iterations (1000 in this work). The resolution is set to 10240 and the external DAG is constructed
via slab (1D) decomposition into four domains. We also experiment with other decompositions,
such as pencil (2D), without change in conclusions. The Heat DAG is symmetrical, thus no task
criticality assignment is performed.

Sparse LU Factorization is selected from the Barcelona OpenMP Tasks Suite. This benchmark
computes an LU matrix factorization over sparse matrices. The matrix is composed of N×N
blocks, each of which has a pointer to a sub-matrix of size M×M. The application includes four
kernels: LU0, FWD, BDIV and BMOD. Among of them, LU0, FWD, BDIV are set as critical tasks.

Evaluated Scheduling Policies. In order to evaluate proposed energy e�cient task scheduling
techniques, we utilize random work-stealing (abbr. RWS) as a baseline scheduler. RWS is a typ-
ical and widely used scheduling scheme for task-DAGs, which still works well in asymmetric
environment. It is a greedy scheduler that tries to keep all cores busy. This results in more tasks

D3.4 Version 1.0 17 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Table 4.2. Summary of evaluated runtime strategies

Name Acronym Notion

Random Work Stealing (with Sleep) RWS (+Sleep) Typical greedy scheduling (enhanced with “Sleep”)
Fastest Cores with Criticality (with Sleep) FCC (+Sleep) Performance-oriented criticality task scheduling (enhanced with “Sleep”)
Lowest Costs with Criticality (with Sleep) LCC (+Sleep) Lowest cost-oriented criticality task scheduling (enhanced with “Sleep”)
Lowest Energy without Criticality LENC The goal of scheduling each task targets lowest energy
Lowest Energy with Criticality LEC The goal of scheduling critical tasks targets performance

6621.3
5704.2

0

1

2

3

4

5

2 4 8 16

En
er

gy
 [J

]
x1

00
0

(a) MatMul

9880.7

0

1

2

3

4

5

6

7

2 4 8 16

En
er

gy
 [J

]
x1

00
0

(b) Copy

9893.5
7118.1

0

1

2

3

4

5

6

2 4 8 16

En
er

gy
 [J

]
x1

00
0

(c) Stencil

Figure 4.5. Energy comparison of three synthetic benchmarks on Intel Haswell.

being scheduled to powerful cores, which achieves execution time balancing between asym-
metric cores. Each task is executed on a single core in the RWS baseline.

In addition, we compare with a performance-oriented criticality aware scheduler (abbr. FCC). FCC
is inspired by related work criticality aware task scheduler CATS [13], but instead of using one
core for each task in CATS, FCC features task moldability, i.e. each task can be executed onmulti-
ple cores, which could show the bene�t of task moldability by comparing to RWS. In comparison
to RWS, FCC has criticality awareness and critical tasks in FCC are dynamically scheduled to the
fastest con�guration pair (leader core, resource width) by globally checking all possible con�g-
urations in the dynamic performance modeling table described in D3.3, while non-critical tasks
only search locally for the fastest resource width (i.e. task moldability) without changing the
launching core. We also develop a lowest cost-oriented criticality aware scheduler (abbr. LCC).
The di�erence between FCC and LCC is that LCC attempts to minimize the parallel costs, i.e. the
product: execution time× the resource width. We also enhance these three schedulers with the
same exponential backo� sleep strategy to study this energy conservation technique.

The energy e�cient scheduler (LENC) is a variant that steers all tasks for the lowest energy, inde-
pendent of task criticalities. Finally, to learn the impact of critical tasks on energy e�ciency, we
devise a lowest energy with criticality scheduler (LEC) which assigns critical tasks to the fastest
con�guration pair, similar to FCC. All evaluated schedulers and their variants are described in
Table 4.2.

4.1.2.2. Evaluation Results

Figure 4.5 shows energy consumption of di�erent scheduling policies when running three syn-
thetic benchmarks with di�erent DAG parallelisms ranging from 2 to 16. Note that we evaluate a
wider DAG parallelism spectrum (i.e. we include p=16) since the symmetric platform comprises
more cores. The results show that LENC consumes less energy than other scheduling policies
and the energy reduction is signi�cant especially when DAG parallelism is low. In the case of
MatMul with low DAG parallelism, RWS only utilizes a single core for executing a task, while
under-utilized cores consistently attempt work stealing resulting in a considerable increase in

D3.4 Version 1.0 18 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

0

100

200

300

400

500

600

MAX&MAX MAX&MIN MIN&MAX MIN&MIN

En
er

gy
 [J

]

(a) VGG16 on TX2

0

5

10

15

20

25

RWS RWS+S FCC FCC+S LCC LCC+S LENC

En
er

gy
 [J

]
x1

00
0

(b) Heat on Intel Haswell

0

5

10

15

20

25

30

RWS RWS+S FCC FCC+S LCC LCC+S LENC LEC

En
er

gy
 [J

]
x1

00
0

(c) Sparse LU on Intel Haswell

Figure 4.6. Energy comparison results of three applications on two platforms. MAX & MIN in x-axis of Fig-
ure 4.6a means that on TX2 Denver cluster’s frequency is maximum and A57 cluster’s frequency is minimum.

energy consumption. On the contrary, LENC is able to achieve high energy e�ciency through
moldable execution of tasks. Wider width selection aids in e�ectively reducing the energy con-
sumption by limiting periods of under-utilization. With FCC, 95.5% tasks execute with a resource
width of 10 since it is the fastest con�guration and 1.6% execute with a resource width of 5. In
comparison, LENC executes 96.1% tasks with a resource width of 10 and 3% tasks with a resource
width of 5, which further reduces under-utilization. The gap between LENC and FCC reduces with
increasing DAG parallelism since there is a decline in the under-utilization period.

In this section, we analyze the impact of the scheduling features using three real applications.
VGG-16 is an inference workload that is typical of mobile and edge devices. We use the Nvidia
TX2 platform as it features characteristics typical from this domain (asymmetry, low core counts).
The Heat and Sparse LU benchmarks are common HPC workloads that we evaluate on the dual-
socket Intel multicore node (symmetric, high core count). We also evaluated the opposite con-
�gurations which leads to the same conclusions and is not further discussed here.

Asymmetric Platform. Figure 4.6a shows energy consumption when running VGG-16 application
on TX2. The results show that the LENC scheduler is the most energy e�cient scheduler across
di�erent frequency settings. This scheduler achieves 31% to 75% energy reduction in comparison
to RWS, and from 19% to 68% energy reduction compared to FCC and between 25% to 73% energy
reduction compared to LCC. This can be attributed to the bene�ts by using task-type aware
execution and task moldability of LENC when running on asymmetric platforms.

Symmetric Platform. In order to show the genericity and portability of our proposal, we also
evaluate two applications i.e. Heat and Sparse LU, on one symmetric platform Intel Haswell.
Figure 4.6b and 4.6c show the energy consumption comparison between di�erent scheduling
strategies. The results show again that LENC achieves better results than other scheduling poli-
cies. To understand the e�ectiveness of LENC, we analyze the resource width distribution across
di�erent scheduling policies for Heat. The result is shown in Figure 4.7. The �gure shows that
the majority of tasks in FCC execute with a resource width of 10. In contrast, in the case of LCC
70% of tasks execute with a resource width of 1 due to reduced parallel cost associated with
the execution. In the case of LENC, the number of tasks that execute with a resource width of
5 and 10 are almost equal. This happens because in Heat there are two di�erent types of ker-
nels with di�erent scalability: jacobi and copy. The jacobi kernel is compute-bound and while
copy is memory-bound. LENC is able to determine an optimal width for each kernel. During
the run, 98% of jacobi tasks execute with a resource width of 10 as it the most energy e�cient
con�guration while 97% of the copy tasks execute with a resource width of 5.

D3.4 Version 1.0 19 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

width=10
90.40%

(a) FCC

width=10
90.18%

(b) FCC+Sleep

width=1
69.36%

width=2
23.91%

(c) LCC

width=1
70.15%

width=2
21.35%

(d) LCC+Sleep

width=5
47.13%

width=10
48.14%

(e) LENC

Figure 4.7. Heat task distribution with di�erent resource width on Intel Haswell.

Network design expressed in tensor template
language

Determine computational weight of each layer of the
network

Generate initial population

Find Optimal Pipeline Configuration

Pre-Processing

Online

Figure 4.8. Overview of Pipelined CNN in XiTAO.

4.1.3. Support for Pipeline Parallelism

XiTAO now supports pipeline parallel execution of Convolutions neural networks. The system
overview is depicted in �gure 4.8. The Framework consists of 2 modules.

1. In Pre-processingmodule, We determine the computational hints from network descriptor.
The hints provide a notion of computational weights of each layer based on which we
model the initial partition of network layers to generate a pipeline stage.

2. In the online module, we measure the con�gurations which are highly expected to be a
good candidate for a balanced pipeline on a given platform. The training �nishes when
algorithm has found the optimal solution for mapping. Rest of the input data is then
processed in pipelined fashion.

4.1.4. Pipelined execution of VGG-16

The �gure 4.9 shows two phases of execution:

D3.4 Version 1.0 20 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Denver 0

Denver 1

A57 2

A57 3

A57 4

A57 5

61 200 500

Timeline [s]

Pipeline Stage 1

Pipeline Stage 2

Pipeline Stage 3

Training Phase

FC

FC

FC

MAXPOOL

Conv64

Conv64

Conv64

MAXPOOL

Conv64

Conv64

Conv64

MAXPOOL

Conv64

Conv64

Conv64

MAXPOOL

Conv64

Conv64

MAXPOOL

Conv64

Conv64

Figure 4.9. Execution timeline of VGG 16 on Nvidia Jetson TX2.

1. The training phase of the execution.

2. The normal phase of the pipeline processing.

During the training, after 61 input frames, the algorithm converged to a 3-Staged pipeline. The
core partitioning is static and pre-decided for each pipeline stage count. Pipeline Stage 1 com-
prises of �rst 6 layers and executes on 2 Denver cores. Pipeline Stage 2 comprises of next 5
layers and executes on 2 A57 cores. Pipeline Stage 3 comprises of the last 10 layers and executes
on 2 A57 cores.

As throughput maximizing pipeline is the one which has smallest bubble size and the slowest
stage takesminimum possible time.The bubble size is referred to as the latency gap between the
execution time of pipeline stages, zero bubble size ideally means a fully balanced pipeline. Thus
the con�guration is chosen based on the fact that it minimizes the bottleneck of the pipeline.
As we can also observe in the �gure 4.9, the resulting pipeline has a negligibly small bubble size.

4.2. OmpSs

4.2.1. OmpSs@FPGA, OpenCL and CUDA

In this section we show the evaluation of the OmpSs support for Intel FPGAs (including envi-
ronments with FPGAs and Nvidia GPUs), the evaluation of OmpSs@FPGA on Xilinx FPGAs, using
the ZCU102 development kit, and the development and evaluation of the OmpSs-2 support for
Xilinx FPGAs.

4.2.1.1. OmpSs support for CUDA and OpenCL

We have evaluated the OmpSs support for OpenCL FPGAs and Nvidia GPUs, with two di�erent
environments:

• Intel Arria 10 FPGA: single chip 4 core Intel Core(TM) i7-6700 @ 4GHz, with hyperthreading,
Terasic de5net a7 Arria 10 FPGA, and Nvidia GeForce GTX Titan X GPU. Matrix multiplication

D3.4 Version 1.0 21 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

is executed with a matrix size of 2048x2048 single precision values, and a block size of
64x64 elements.

• Intel Stratix 10 FPGA: dual chip 6 core Intel Xeon(R) Bronze 3204 @ 1.9GHz, without hyper-
threading, Intel Stratix 10 FPGA, and Nvidia GeForce RTX 2070 SUPER GPU. Matrix multipli-
cation is executed with a matrix size of 4096x4096 single precision values, and a block size
of 128x128 elements.

Figure 4.10 shows the performance obtained on the Matrix Multiplication benchmark using the
combined OmpSs@OpenCL, to execute work on the Arria 10 FPGA, and OmpSs@CUDA, to exe-
cute work on the Nvidia GeForce Titan X GPU. The benchmark uses the implements approach to
indicate that the block by block matrix multiplication kernel on block sizes of 64x64 elements
is available in three versions: for the Intel cores, using the MKL library, for the Arria 10 FPGA,
compiled from OpenCL, and for the Nvidia GPU provide in CUDA or using the CUBLAS library.

Results show that OmpSs running on the FPGA only (labeled OmpSs@FPGA) introduces some
overhead compared to the native OpenCL execution (1st column, labeled opencl-fpga).

In this particular case, the FPGA performance is comparable to the performance of a single Core
i7 (labeled smp 1). The SMP cores scale up to 4, reaching around 350 G�op/s. Hyperthreads (la-
bels smp 5 to smp 8) do not add additional performance due to the sharing of the �oating point
units across them. This is a well-known behaviour for hyperthreading and HPC applications.

Nevertheless, hyperthreading is actually providing additional performance when used in com-
bination with the FPGA. In this case, every core included in the execution, adds 50 G�op/s (la-
bels smp 1+fpga to smp 4+fpga) and every additional hyperthread adds around 20 G�op/s (smp
5+fpga to smp 7+fpga). The particular case of smp 8+fpga gets lower performance as in this
case we need to have one of the hyperthreads running matrix multiplication kernels in the SMP,
and also taking care of the events of the FPGA through the OpenCL runtime. This sharing is
introducing delays in the synchronization and this lowers the performance obtained.

The performance is compared also with the CUDA versions (labeled cuda-gpu and cublas-gpu).
They obtain around 150 G�ops, and when adding additional cores (labels smp 1+gpu to smp
3+gpu) we achieve an increase in performance. When using 4 additional cores, the performance
is getting a lot of variability due to the use of one additional hyperthread to manage the GPU.
This seems to indicate that the management of the GPU takes more resources than the man-
agement of the OpenCL FPGA, if we compare columns smp4+gpu with smp 4+fpga.

Hyperthreading is not helping in any of the cases, labels smp 5+gpu to smp 8+gpu. Finally,
label OmpSs@CUDA/FPGA shows the performance obtained when using the CUDA GPU and the
OpenCL FPGA at the same time. In this case, we do not use additional SMP cores, as they only
reduce the performance obtained. As there is no device that outperforms the rest, in this case
the data transfers between the GPU/FPGA and main memory hinder the possibility to obtain
performance when using both devices.

Figure 4.11 shows the performance obtained when running the same benchmark on the Stratix
10 FPGA and GeForce RTX 2070 SUPER GPU.

Comparing the performance of OmpSs with the FPGA (labeled OmpSs@FPGA), with the perfor-
mance of the native OpenCL execution, we also observe a light drop in performance due to the
overhead of OmpSs task management.

D3.4 Version 1.0 22 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.10. Performance of OmpSs@OpenCL/CUDA Matrix Multiplication on the Intel Arria 10 FPGA and the
Nvidia GeForce GTX Titan X GPU

In this case, the SMP cores (with no hypertreading), labels smp 1 to smp 12, scale from around
40 G�op/s to 420 G�op/s when using 11 cores. The single core performance is much lower than
the Intel Core i7, but the Xeon architecture provides better memory bandwidth, and scalability.
This also allows that 11 cores add performance on top of the FPGA (labels smp 1+fpga to smp
12+fpga). The later smp 12+fgpa is not scaling properly due to the sharing of one core between
the SMP tasks execution and the FPGA management.

On this environment, the Nvidia GPU is much more powerful that the rest of the devices (label
cuda-gpu, reaching 800 G�op/s). This prevents getting additional performance when adding
cores to the experiments (label smp 1+gpu to smp 12+gpu). In these cases, the GPU is so fast that
allowing a core getting a task for execution already slows down the execution of the benchmark.

When using the combined execution on GPU and FPGA, the performance is also reduced com-
pared to GPU only, as the e�ect is similar. The task executing on the FPGA delays the rest of
the application. On this environment, we also show how the cores contribute when using the
GPU and the FPGA. Initially the performance drops a lot (smp 1+gpu+fpga), increasing slightly
with additional cores (smp 2+gpu+fpga to smp 5+gpu+fpga), and getting a little lower and stable
up to smp 10+gpu+fpga. The executions on smp 11+gpu+fpga and smp 12+gpu+fpga get lower
performance due to the overhead introduced by sharing two cores with SMP execution and GPU
and FPGA management.

In conclusion, we think that the implements approach can be interesting when the performance
of the several resources used is not so di�erent, like what happens with the FPGA and the SMP
cores, and in those situations adding several additional cores to the execution can improve the
performance (like in the experiments labeled smp 1+fpga to smp 11+fpga).

4.2.1.2. OmpSs@FPGA energy e�ciency

We have executed a set of matrix multiplication experiments in the Xilinx ZCU102 development
kit, with 4 ARMA53 cores and an integrated XCZU9EG FPGA. Eachmatrixmultiplication experiment
consists of 20 executions of matrix multiply, on a matrix of 2816x2816 single precision �oating
point elements. The matrix is blocked in tiles of 256x256 values.

The program uses OmpSs to o�oad tasks, either to the FPGA or the ARM cores. The FPGA is
programmed through OmpSs to have 3 instances of the matrix multiplication IP core, that can

D3.4 Version 1.0 23 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.11. Performance of OmpSs@OpenCL/CUDA Matrix Multiplication on the Intel Stratix 10 FPGA and
the Nvidia GeForce RTX 2070 SUPER GPU

be used in parallel, and independently of each other.

Figure 4.12 shows the power consumption of the execution of 7 experiments, in this order:

1. the two �rst peaks reaching up to 18W (between seconds 17-33 and 49-65, are two execu-
tions of the 20 matrix multiplications, using the 3 instances of the matrix multiplication IP
core.

2. the next two peaks reaching 14W (between seconds 75-97 and 110-129) are two executions
of the 20 matrix multiplications, using 2 of the IP core instances.

3. the next two sets of bars reaching 10.5 - 11W (seconds 141-200 approximately) are the same
two executions of the 20 matrix multiplications, using a single of the IP core instances.

4. the �nal �at line stable at 3W is the same execution of the 20 matrix multiplications using
the 4 ARM A53 cores only. In this last execution, we have substracted the power consump-
tion of the PL logic (around 3.8W while idle), as it is not used in the execution.

Figure 4.12 shows the total power consumption (light blue line), the Processing System (PS) power
(dark blue), and the Processing Logic (PL) power (yellow), as the main contributors. DDR, BRAM,
and Management power consumptions are constantly below 0.5W.

If we compute the GFlops obtained by the di�erent sets of executions, we get:

• 3x IP core instances achieve 94.5 G�ops, with amean consumption of 15.1W and amaximum
of 6.26 GFlops/W.

• 2x IP core instances achieve 77.6 G�ops, with a mean consumption of 10.6W and 7.32 GFlop-
s/W. This is the best energy-e�cient experiment.

• 1 IP core instance achieves 47.1 G�ops, with amean consumption of 9.2W and 5.11 GFlops/W.

• 4 ARM A53 cores achieve 12.1 G�ops, with a mean consumption of 2.95W, and 4.1 GFlops/W.

Performance (GFlops) and energy e�ciency (GFlops/W) for the same experiments is shown in
Figure 4.13. Results show that the best performance is obtained with 3 matrix multiply IP accel-
erators, while the best energy e�ciency is obtained with 2 matrix multiply IP accelerators.

D3.4 Version 1.0 24 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.12. Online power consumption on the matmul experiments with OmpSs@FPGA

Figure 4.13. Performance and energy-e�ciency with OmpSs@FPGA matrix multiplication

Concluding, the code transformations done with OmpSs to exploit matrix multiplication on the
FPGA result in an increase of the GFlops/W obtained from the Zynq U+ chip, increasing power
e�ciency when using more resources in the FPGA fabric.

4.2.1.3. OmpSs-2 support for FPGA/CUDA separate memories

While developing the new OmpSs-2 runtime system, we have had the need to incorporate sup-
port for GPUs and FPGAs with separate global memory. This environment covers discrete GPUs
with or without uni�edmemory support and discrete FPGAs. We have designed the directory and
software caching mechanism for OmpSs-2 to support such devices. This work has been done in
the context of a master thesis [28]. From the compiler, at task creation point the nanos6 runtime
receives the information on the task dependences, that can be directly used to implement the
data caching mechanism on the target device memory, and issue the memory transfers. Those
memory transfers are implemented by means of the CUDA runtime, for Nvidia GPUs, and using
our xtasks/xdma [9] libraries for Xilinx FPGAs. We have leveraged the same code generation that
we use for OmpSs-1 in OmpSs-2, so the infrastructure that we have in the FPGA is the same, and
it changes the software side that we have made integrated with the OmpSs-2 runtime system.

Figure 4.14 shows the comparison of the performance obtained on the matrix multiplication
benchmark on the ZCU102 FPGA environment, when using di�erent matrix sizes and the OmpSs-
1 and OmpSs-2 environments. As it can be seen the performance is very similar, with a small
performance drop on the new OmpSs-2 environment, that we will examine and try to further
reduce in the future. Figure 4.15 shows the comparison of the performance obtained in the
OmpSs-2 environment, with the new OmpSs-2 directory/cache support, OmpSs-2 with Prefetch-
ing and OmpSs-2 with Uni�ed Memory. Results demonstrate that the new implementation of
OmpSs-2 with the directory/cache outperforms both the prefetching and the uni�ed memory
support. This fact makes us think that the implementation done with the directory and cache

D3.4 Version 1.0 25 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

support will be useful for future developments with OmpSs-2.

Figure 4.14. Comparison of the performance of OmpSs-1 and OmpSs-2 matrix multiplication on the ZCU102
FPGA development kit, with the new OmpSs-2 directory/cache support

Figure 4.15. Comparison of the performance of OmpSs-2 matrix multiplication, with the new OmpSs-2 direc-
tory/cache support, OmpSs-2 with Prefetching and OmpSs-2 with Uni�ed Memory

4.2.2. OmpSs@Cluster

OmpSs-2@cluster is the distributed memory variant of the OmpSs-2 programming model. It is
based on the latest iteration of the OmpSs programming model, i.e., OmpSs-2 [5], which sup-
ports e�cient task nesting through weak dependencies and early release of dependencies [23].
OmpSs-2@cluster was originally developed in ExaNoDe [27], and it is compatible with the SMP
version of OmpSs-2, so that the same program and compiled binary can be executed on either
an SMP or a cluster of SMPs. OmpSs@cluster has been part of the OmpSs-2 public release since
June 2019.

4.2.3. Smart-Mirror/OmpSs@Cluster

The Smart Mirror use case is an interactive human interface to a smart environment, such as
a home, where sensory information is collected from the surroundings to give the user helpful
information, such as the weather forecast or temperature, in addition to helping them by moni-
toring, remotely controlling or automating their daily actions (e.g., opening a window or setting
a schedule) [30].

The Smart-Mirror software comprises an object recognition module that employs a neural net-
work to identify objects and faces seen by the mirror, in addition to voice and gesture con-

D3.4 Version 1.0 26 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

trol modules. The hardware prototype and setup employs two NVIDIA Jetson Xavier developer
boards.

The object detection module includes a camera part by which an image is captured (in raw for-
mat) from a video stream and processed (e.g., scaled) to match the requirements of the neural
network that performs the actual object detection and extraction. Finally, a Kalman and Hungar-
ian �lter step is introduced which increases the certainties of current detection by incorporating
previously detected objects along with the new ones.

OmpSs-2@cluster allows the CPU and GPU compute to be divided among two nodes, increasing
the frame rate by a factor of three from 6 fps to 19 fps at a 17% increase in power consumption,
from 47W to 55W. This is possible using the annotations described in this section at minimal
development cost.

4.2.3.1. Single Node Implementation

The original implementation run on a single Xavier board, leaving the second node non-utilized.
The single node implementation also executed the camera, neural network, and Kalman �lter
parts sequentially, hence not fully utilizing all the cores on the single Xavier node.

Figure 4.16 highlights a snippet code of the original implementation. The neural network is
initialized (line 2) according to some desired con�gurations and weights. The application goes
into the main loop (line 11), which runs until the program quits. At each iteration, it captures an
image (line 14) from the camera, feeds this image to the network (lines 18–19), and �nally applies
the Kalman �lter (line 23).

4.2.3.2. OmpSs-2@Cluster Implementation

Themain objective was to divide the work between the two Xavier nodes such that the �rst node
will be used for the camera capturing part alongside other modules, while the second node ac-
celerates the object detection and the �lter parts. It was also necessary to do so in a portable
and productive way, including the minimum of details about the platform and no explicit data
transfers. To fully utilize both Xavier nodes, the Smart-Mirror application (speci�cally the ob-
ject detection, and the camera parts) was ported to OmpSs-2@Cluster task-based programming
model, and executed by the Nanos6 runtime system that implements the OmpSs-2@Cluster
model.

Porting Smart-Mirror to OmpSs-2@Cluster required a straightforward and clear transformation
by dividing the code into tasks. The taski�cation was done by surrounding the single node
code with directives (#pragmas). To express data dependencies between di�erent tasks, extra
clauses in, out, and inout were appended to the #pragmas to specify all memory accesses
of these data. Tasks are then executed in parallel by the Nanos6 runtime, and easily scheduled
by the runtime to run on any desired Xavier node. Scheduling tasks to run on a speci�c node
however can be forced by using the node clause.

Figure 4.17 and Figure 4.18 shows the OmpSs-2@Cluster taski�ed code for the same code in
Figure 4.16. Task init_node_one represents the neural network initialization. As mentioned
above, since the prediction step will be entirely computed on the second Xavier node, we use
the node clause here with value of 1 indicating that we want to schedule this task on the second
node (counting from 0). The node clause was introduced in D3.3 [25].

As mentioned earlier, at each iteration we capture an image frame, perform predictions, then

D3.4 Version 1.0 27 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.16. Single node implementation of the object detection part of the smart mirror.

Figure 4.17. Initialization step of the OmpSs-2@Cluster implementation of of the object detection part of the
smart mirror.

update the tracked features (trackers) resulted from the predictions using the Kalman �lter.
Since the image frame capturing code is executed entirely on the �rst node and also it will be
the only code that will be executed on the �rst node, so it is not taski�ed and is executed as
a normal function call, get_image_from_stream_resize. Note that the captured image on
node 1 needs to be copied to node 2 for the predictions, however OmpSs-2@Cluster simpli�es
this by only adding a pointer to the image data as an input dependency to the predict task,

D3.4 Version 1.0 28 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.18. Main loop of the OmpSs-2@Cluster implementation of the object detection part of the smart
mirror.

hence data copy will be made implicitly by the Nanos6 runtime.

To addmore parallelism, we needed to execute the prediction step concurrently with the update
step. However the update cannot occur until after the prediction has been made. Hence we use
two predictions bu�ers pDets0, and pDets1, iteration (i+1) will be predicting the current
iteration (i) image frame, and updating the the predictions of the previous iteration (i-1).
To avoid copying the data between the two bu�ers at each iteration, we divide the while loop
into even and odd iterations, and swap the pointer passed to each of the prediction, and update
tasks.

Note that thenode(1) clause is also usedwith theeven_buffer, even_predict, andeven_update
tasks to schedule them on the second Xavier node as desired. In addition, transferring the image
is implied via the dependency representation clause.

D3.4 Version 1.0 29 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Single Node OmpSs-2@Cluster
Xavier node 1 Xavier node 2 Xavier node 1 Xavier node 2

CPU utilization 30% 0% 116% 122%
GPU utilization 80% 0% 0% 80%

Table 4.3. CPU and GPU utilization of the single node and the OmpSs-2@Cluster implementations running
alone.

Frame rate Power consumption

Single node 6 fps 47W
OmpSs@cluster two node 19 fps 55W

Table 4.4. Frame rate and power consumption of whole smart mirror application.

4.2.3.3. Results

To fully utilizing both Xavier nodes and shifting the GPU usage from the �rst Xavier node en-
tirely to the second Xavier node, Table 4.3 shows the CPU and GPU utilization of the single node
implementation versus the OmpSs-2@Cluster.

Table 4.3 shows the performance of the object recognitionmodule running alone. Both the single
and OmpSs-2@Cluster implementations are limited by the camera’s frame rate to 30 FPS. The
energy consumption is 25W for the single node implementation, whereas for OmpSs-2@Cluster
this dropped to 13W for the �rst node due to 10W consumption for the per-processing of the
raw captured image (i.e., scaling), and total of 17W for the second Xavier node.

Table 4.4 shows the frame rate and power consumption for the whole full smart mirror appli-
cation. In both versions, single node and OmpSs-2@cluster, the bottleneck is the GPU on the
�rst node. O�oading the object and gesture recognition from the �rst to second node allows
the GPU compute to be divided among two nodes, increasing the frame rate by a factor of three
from 6 fps to 19 fps at a 17% increase in power consumption, from 47W to 55W. This was possible
using the annotations described in this section at minimal development cost.

5. Runtime support for Fault Tolerance and Security

5.1. FPGA Checkpointing

Current supercomputers are in need of e�cient fault tolerance systems due to their sheer
amount of computing units; FPGAs also need to co-exist with them and be able to take advan-
tage of those resilience techniques as well. Thus, evaluating the performance of fault tolerance
schemes in HPC systems with FPGA devices is crucial for the future of large scale supercomput-
ers.

Checkpointing is the preferred software resilience mechanism for Scienti�c Computing which
typically feature long running applications. In Legato, we propose to implement Checkpoint-
Restart (CR) for FPGA applications running on heterogeneous systems (i.e., CPU-FPGA). For that,
we adapt ourmultilevel checkpoint library called Fault Tolerance Interface (FTI) [6], in order to be
able to checkpoint FPGA applications. This is the same library we used in the past to checkpoint
GPUs (See Deliverable 3.3). With this, we achieve a common resilience interface, to provide fault
tolerance to all type of heterogeneous systems with power e�cient accelerators (i.e., GPUs and

D3.4 Version 1.0 30 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

FPGAs).

In this section we explain themethodology which we followed to implement FPGA checkpointing
for applications that run with OmpSs@FPGA. The work is separated into two di�erent main
approaches when it comes to implementing FTI functionality: host-based checkpointing and
checkpointing of partial data from the FPGA task. We use the term FPGA task to describe the
portion of the application which is implemented for FPGA.

5.1.1. Host-based Checkpointing

As the name implies, this implementation approach is completely transparent to the FPGA, and
is only done from the host application, once the FPGA task has �nished. It is the most typical
implementation, where the FTI annotations are usually put in the main loop and keeps track of
the iteration number and the data needed to recover the execution upon a failure. This is the
ideal method when the FPGA tasks do not take a considerable amount of time to execute. This
implementation is also most useful when the FPGA tasks are repeated a considerable amount of
times, in which case it gives the user enough �exibility for setting the checkpoint frequencies.

5.1.1.1. Adapt Applications to MPI/FPGA

The �rst step is to adapt the applications that will be used for the evaluation to the proper envi-
ronment. That is, to adapt the message passing programming model of the host application and
transform the work of the inner kernels of the application into FPGA tasks. FPGA’s con�gurable
logic.

We work mainly with three di�erent applications: (1) a Jacobi solver, (2) a YUV �lter and (3) a
K-means application (See Section 5.1.4). In the case of the Jacobi solver, MPI communications
were already implemented in the original code (heatdis.c) [1] and thus we only needed to
transform the computation part to FPGA tasking. The YUV �lter was already implemented as an
FPGA task but was not implemented as a distributed application, which we did. This algorithm
was also slightly modi�ed to perform various �lters for the same image repeatedly, instead of
doing it for di�erent instances of the images. The reason of this change was to avoid the hosts
having to deal with thousands of instances of the same image, since that would saturate their
limited memory capacity. The K-means application was already implemented as a MPI/FPGA
applications, and so it did not need any signi�cant change.

5.1.1.2. Add FTI support

The change mainly consisted in protecting the variables necessary for the recovery of the exe-
cution in case of failure, and adding the FTI annotations inside the main loop to decide when
it is time to perform a checkpoint or recovery. Fig. 5.1 shows an example of this checkpointing
method. The important data is protected by using FTI_Protect, which will be recovered in the
case of a failed execution. Note that in addition to the main datasets, we also need to protect
the iteration number since it is crucial to properly resume the execution.

In the case of the Jacobi solver and YUV �lter, FTI_Snapshot was used to signal the applica-
tion to checkpoint at a given interval using the con�guration �le. For the K-means application,
however, a manual checkpoint was performed instead for more than one minute.

D3.4 Version 1.0 31 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.1. Example of host-based checkpointing

5.1.1.3. Host-based Checkpointing Task Implementation

Figure 5.2 shows the implementation of the FPGA task from the host-based version of the Jacobi
Solver application. Since the checkpoints are performed inside themain loop of the application,
the FPGA task does not contain any checkpoint speci�c logic inside.

Figure 5.2. Implementation of Host-based checkpointing for the Jacobi Solver application

In the implementation, the host copies all the matrix data to FPGA memory at once, and then
calls the FPGA task. The FPGA task gradually copies the data from the memory to local variables
(which are stored in the BRAM), and performs the computation. The task also copies the impor-
tant data back to memory so that the host can gather the results after the task has �nished.

5.1.2. Checkpointing partial work of the FPGA task

The intuition of this alternate implementation is to be able to checkpoint the progress of the
FPGA task at certain points of its execution, without the need for the FPGA task to send its
intermediate results to the host. Note that checkpointing inside the FPGA task is unnecessary for
these speci�c applications, since the FPGA tasks only last a few seconds. However, this technique
could prove useful when used on FPGA tasks which run for a long time before returning the �nal
result.

D3.4 Version 1.0 32 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.3. FPGA copies data to memory.

5.1.2.1. Adapting application to handle partial checkpointing

Because the host is unable to access the Block RAM of the FPGA, every data transmission or
communication has to be done through the FPGA memory or stream through the PCI interface.

The �rst approach we have taken is to make the FPGA task and the host synchronize through the
FPGA memory and communicate when a checkpoint is needed. That is, after a certain amount
of work the FPGA would copy the work back to FPGA memory and set a �ag (we will call it �agA)
to tell the host that data is ready to be checkpointed. We can observe a representation of this
in Figure 5.3.

The host would then copy the data that is relevant to hostmemory and perform aFTI_Checkpoint.
While the host is copying the data and performing the checkpoint, the FPGA waits to avoid over-
writing data and making the checkpoint in an inconsistent state. When the host �nishes, it tells
the FPGA task to resume its execution by setting another �ag (we will call this one �agB) in the
FPGA memory. We can see a representation of this in Figure 5.4.

For performance objectives, it is better to avoid synchronizations whenever possible. Thus, the
next step was to implement a modi�ed version of the previous approach which does not need
synchronization between the host and the FPGA task. In this implementation, the host checks
the progress of the FPGA in global memory while the FPGA task is constantly running.

Figure 5.4. Host performs a checkpoint of partial FPGA data.

The idea behind this new approach is the following: if the FPGA task has started computing the
data for checkpoint i, that means that the data for checkpoint i-1 is ready to be copied (assuming
HLS optimizations do not make the operations out of order). In order to have a secure way to

D3.4 Version 1.0 33 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

copy data without risking overrides, some structures will need to be replicated. That way, if we
need data a for checkpoint i, we need to access it through a[i].

In the case of the Jacobi solver, the FPGA task divides the computation into a �xed amount of
blocks. Because of this, we decided that a checkpoint will be performed for every block compu-
tation. The local error needs to be replicated, since it is overwritten on every block iteration. The
gmatrix does not need to be replicated, since each block number modi�es a di�erent region of
the matrix.

As for the YUV �lter, we limited it to a total number of 3 checkpoints. In this case, the checkpoint
is not related to the partial computation of the data, but rather to the stage in which the FPGA
task is currently at. That is, checkpoint 1 refers to the image being converted from RGB to YUV,
checkpoint 2 refers to the �lter being applied and checkpoint 3 refers when the image has been
converted back to RGB. This partitioning might look unintuitive for this speci�c application but
it could prove useful depending on the use-case.

5.1.2.2. Partial work Checkpointing Task Implementation

As can be seen in Figure 5.5, the implementation of the checkpointing partial work of the FPGA
task adds the required extra logic to handle the checkpointing and the recovery of the FPGA task
progress.

Figure 5.5. Implementation of Partial work Checkpointing for the Jacobi Solver application

If param[0] is found to be bigger than zero, it means that the FPGA task is resuming from an
execution failure. In that case, it recovers the local error and the block iteration and continues
the computation from there. Otherwise, it is assumed to be a normal execution and both the
block iteration and local error variables are initialized to zero. The recovered matrices are al-
ready given to the FPGA task by the host, and so does not require additional logic. Unlike in
the previous version, the local error needs to be copied to memory periodically to tell the host
that there is a new checkpoint procedure available. Since the host has to be actively waiting
for changes in memory, a taskwait pragma does not su�ce as a way to know that the task has

D3.4 Version 1.0 34 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

�nished, and so param[1] is used instead.

5.1.3. Environment

We performed the experiments on a cluster of 4 Xilinx Zynq-7000 SoC nodes. Each node is
composed of a 32bit 2-core ARM processor with 1GB of DDR3 memory with an integrated Xilinx
FPGA device. The FPGA device has the following speci�cations[2]:

• Logic Cells: 85

• Block RAM: 4.9Mb

• DSP Slices: 220

• Maximum I/O Pins: 200

As for the framework, we used version 2.2.0 of OmpSs@FPGA environment, along with Vivado
Tools 2017.3 for the synthesis and generation of the FPGA bitstream.

The FTI version used was 1.4.1. The FTI con�guration parameters were the following:

• No head (FTI dedicated process)

• 1 process per node

• 2 group size

The reason why we used 1 process per node is because the OmpSs@FPGA runtime implementa-
tion only allows one process using an FPGA device. Even though a dedicated FTI process would
not make use of the device, the xTasks library (i.e., the library which is responsible for commu-
nicating with the FPGA device) still tries to access it at startup time and fails to execute if there’s
already another process accessing it. Because of this, the head option was not possible to test
at this time, but it could be part of future work.

5.1.4. Applications

In this section we explain the applications that were used for the evaluation of this work.

5.1.4.1. K-means clustering

K-means clustering[20] is an iterative algorithm that assigns n observations into k clusters, k
being a �xed parameter. The procedure is the following:

• k initial means are generated

• k clusters are generated from the observations based on the nearest mean

• The centroid of each cluster becomes the new mean

• Process is repeated until it converges

5.1.4.2. Jacobi Solver for heat equation

This algorithm consists in an iterative propagation of the heat represented as a 2D matrix. For
every iteration, the average of the 4 neighbor positions (up, down, left, right) is assigned to every
position (excluding the matrix borders). The algorithms stops when reaching a small enough
error or when reaching a maximum amount of iterations.

D3.4 Version 1.0 35 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5.1.4.3. YUV Filter

As the name implies, this algorithms consists on applying a YUV based �lter to an image given
as input. The steps are the following:

• Convert RGB image to YUV format

• Apply YUV �lter to image

• Convert image back to RGB format

• Perform these steps a �xed amount of times

5.1.5. Host-Based FTI

5.1.5.1. K-Means

Since the K-Means application did not a long execution time, we decided to only evaluate the
cost of a manual checkpoint using FTI_Checkpoint.

Two executions of the application were performed, the �rst using a ramdisk as the location
for the checkpoint and the second using a drive mounted by Network File System (NFS). These
experiments are situated on the opposite sides of the performance versus fault coverage trade-
o� state space. Taking the checkpoint to ramdisk is fast and thus high performance but since
ramdisk is volatile on-device memory, this option does not provide fault coverage for FPGA node
faults, but rather just for detected unrecoverable faults such as a double bit �ip on the SECDED
ECC implementations that are found in modern FPGAs. On the other hand, taking the checkpoint
to NFS is slower but provides coverage for FPGA node faults.

For both executions, the application performs a single checkpoint in approximately the mid-
dle of the execution. This way, we can evaluate the cost of the checkpoint compared to the
computation of the application in both cases.

The input used for the execution was 43000 points of 1024 dimensions each, stored in a �le
(173MB). The variables to be protected by FTI were the centroids, the labels, the current iteration,
the current error and the error of the previous iteration. Taking this in consideration, the size of
a L1 checkpoint is 0.20MB per process.

When using the ramdisk as L1 checkpoint location, the execution of the algorithm took 14.18
seconds. The checkpoint taken had a cost of 0.21 seconds. Knowing the checkpoint had to
be taken in the same node as the computation (FTI dedicated process was disabled), we can
observe an overhead of 1.5% due to checkpointing.

When using the NFS drive, the execution of the algorithm took 14.40 seconds. The checkpoint
taken had a cost of 0.59 seconds. In this case, we can observe an overhead of 4.2% due to
checkpointing. As expected, the overhead of writing the checkpoint in a ramdisk is much lower
than when using a NFS drive. However, ramdisks have the downside of being volatile, making
them not ideal for checkpointing purposes. The FTI library having 4 levels of checkpointing can
help mitigate this weakness.

5.1.5.2. Jacobi Solver

For the Jacobi solver, we analysed the performance of the FTI library using checkpoint levels
2, 3 and 4 in separate experiments. For each experiment, we executed the application with FTI

D3.4 Version 1.0 36 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5 10 15 20
505

506

507

508

509

E
x
ec
u
ti
on

T
im

e(
s)

FTI − L4
non FTI

Figure 5.6. Performance comparison of Jacobi Solver implementation with FTI using L4 checkpoint and
without FTI support

functionality for a total of 20 times. After the executions, we took the averages of each one and
compared it to the execution of the application without FTI support. We interleaved the order
of the executions to account for possible system slowdown over time.

For this application, we set a precision limit of 0.005 and amaximumnumber of 35000 iterations,
which made the executions run for almost 10 minutes each.

As mentioned previously, this application makes use of the FTI_Snapshot functionality in-
stead of using a manual checkpoint. We set an interval of 5 minutes of the desired checkpoint
level in each experiment in the FTI con�guration �le, while disabling the rest. The reason why
we decided on L4 checkpoint instead of L1 is because it made the most sense since our storage
drive is NFS. However, we expect it to behave very similarly to a L1 checkpoint in this case due
to there only being 4 nodes writing at the same time, meaning no bandwidth bottleneck should
occur. going to start the evaluation with the L4 experiment.

In this case, the FTI library had to protect the iteration counter and both g and h matrices. The
total size of a checkpoint is 0.26MB per process. The results for L4 experiment are shown in
Figure 5.6. The lines represent the average execution time of each version. We observe that, on
average, the overhead of FTI_Snapshot with the L4 checkpoint in this application is 0.16%.

Figure 5.7 shows the experiment with the L2 checkpoint, also known as partner copy. In this case,
we also see a very low overhead of 0.25%. L2 checkpoint seems to have slightly higher overhead
than L4. This is expected because of the extra communication and I/O required for saving an
extra checkpoint copy of another node.

Experiment with L3 checkpoint is shown in Figure 5.8. As with the previous experiments, we
can observe a slightly higher overhead of 0.32%. This level of checkpointing consists in the
generation and communication of Reed-Solomon erasure codes in order to tolerate failures in
multiple nodes, so the slight overhead increase is due to the extra computational workload from
the nodes and the increased communication needed for the computation.

All 3 experiments show very low overheads in comparison to the original application. As such, we
consider the performance of the FTI library to be a viable option for host-based checkpointing

D3.4 Version 1.0 37 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5 10 15 20
505

506

507

508

509

510

E
x
ec
u
ti
on

T
im

e(
s)

FTI − L2
non FTI

Figure 5.7. Performance comparison of Jacobi Solver implementation with FTI using L2 checkpoint and with-
out FTI support

5 10 15 20
505

506

507

508

509

510

E
x
ec
u
ti
on

T
im

e(
s)

FTI − L3
non FTI

Figure 5.8. Performance comparison of Jacobi Solver implementation with FTI using L3 checkpoint and
without FTI support

D3.4 Version 1.0 38 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

in FPGA heterogeneous systems.

5 10 15 20
558

560

562

564

566

568

E
x
ec
u
ti
on

T
im

e(
s)

FTI − L4
non FTI

Figure 5.9. Performance comparison of YUV Filter implementations with and without FTI support

5.1.5.3. YUV Filter

Just like with the previous application, the YUV �lter was executed 20 times with FTI and an-
other 5 times without FTI. The FTI_Snapshot con�guration was also the same as the previous
application. For this application, we set it to a total of 80000 iterations in order to have a long
enough execution time. We set the L4 checkpoint interval to 5 minutes and disabled the rest
of the checkpoint levels. The FTI library protected the iteration counter and the image data (in
which the �lters are applied). The total size of a checkpoint is 0.16MB per process.

The results are shown in Figure 5.9. We can observe an overhead of 0.66%by usingFTI_Snapshot
and performing the L4 checkpoint, which is larger than the respective Jacobi solver experiment.
One possible explanation could be that the amount of times that FTI_Snapshot is called is
more than double (as many times as iterations), and thus the total overhead is increased. That
said, this is still a very low overhead.

5 10 15 20
500

520

540

560

580

600

E
x
ec
u
ti
on

T
im

e(
s)

FTI
non FTI

Figure 5.10. Performance comparison of Jacobi Solver implementation with partial FPGA task checkpointing
and the non-FTI version

D3.4 Version 1.0 39 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5.1.6. Partial FPGA Task Checkpointing

5.1.6.1. Jacobi Solver

We ran the FTI version of the Jacobi Solver that checkpoints partial work of the FPGA task a total
of 20 times, the same as the previous versions. In Figure 5.10 we compare the original application
with no FTI with this new version where the checkpoint is taken during the FPGA task execution.
In this case, we can see an overhead of 14.82% by using this approach of FPGA checkpointing in
comparison to the original non-FTI application.

While the overhead in this case is certainly larger than the host-based approach, it is worth
pointing out that this application does not bene�t from this method of checkpointing, and has
considerably fast FPGA task execution times so the overhead of every FPGA task execution adds
up. A better application for evaluating this method would be one with an FPGA task that takes
signi�cantly longer to give a �nal result.

Unfortunately, it was not possible to evaluate the YUV Filter version because the modi�ed ap-
plication did not �t in the BRAM of the boards.

5.2. Unvervolting High-Bandwidth Memories

Previously we had empirically evaluated an undervolting technique to improve the power-e�ciency
of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays
(FPGAs). In this report, we focus on High-Bandwidth Memory (HBM). Modern high-performance
devices employ HBM in order to meet high memory bandwidth requirements. HBM uses multi-
ple DRAM chips piled together with the compute device (e.g., CPU, GPU, FPGA) as 3D stacks in the
same package to have a wide interface of at least 1024 bits for data transfer. Although such an
integrated HBM provides high bandwidth at a small form factor, the stacked memory modules
consume a substantial portion of the chip’s power budget. Therefore, power-saving techniques
that preserve the performance of HBM are desirable. Undervolting is one such technique that
reduces the supply voltage to decrease power consumption without decreasing the operating
frequency of the device to avoid performance loss. Undervolting takes advantage of voltage
guardbands put in place by manufacturers to ensure correct behavior under all environmental
conditions. However, reducing voltage without changing frequency leads to reliability issues
resulting in unwanted bit �ips. We provide an experimental study of real HBM hardware under
reduced-voltage operating conditions. Our measurements show that the guardband region in
our HBMmodules is 19% of the nominal voltage; pushing the supply voltage down to that region
provides a 1.5X power saving gain for all bandwidth utilizations. Pushing voltage down further
by 11% provides 2.3X power saving at the cost of unwanted bit �ips. We explore and characterize
the rate and type of these bit �ips and show that the majority of them are clustered together in
less than 16% of the memory’s entire address space.

5.2.1. Structure of HBM

The general organization of an HBM-enabled device is shown in Fig. 5.11. In order to build an
HBM-enabled device, several DRAM chips (and an optional IO/controller chip) are stacked on
top of one another and connected by Through Silicon Vias (TSVs). An e�cient way to utilize a
stack like this is by placing it on a silicon interposer next to a computational unit (like FPGA, GPU,
or CPU) inside the same package. Signals between memory stacks and computational units go
through the silicon interposer. This means there can be far more data lanes (1024 per HBM stack
compared to a regular 64-bit DRAM) and each one can be more e�cient (smaller RC) compared

D3.4 Version 1.0 40 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

to DRAM modules which are placed outside the package on a PCB. As a result, HBM provides at
least an order of magnitude higher bandwidth at lower power consumption (nearly 7pJ/bit as
opposed to ∼25pJ/bit for a regular DRAM) within a much smaller form factor.

Figure 5.11. General structure of an HBM-enabled Device.

5.2.2. Hardware Under Test

The platform we use for our experiments consists of a Xilinx VCU128 board [31] mounted with an
XCVU37P FPGA. This FPGA part includes two HBM stacks of 4GB totalling 8GB. Each stack has four
DRAM chips with 1GB capacity each (similar to Fig. 5.11). Fig. 5.12 shows a general overview of the
underlying HBM memory. The traditional FPGA fabric is divided into three Super Logic Regions
(SLR). Each SLR is a separately fabricated chip with con�gurable circuitry. They are connected
with the same technology that enables them to connect to HBM stacks.

Figure 5.12. HBM Interface and internal organization of XCVU37P.

Address space of each stack is divided between 8 independent memory channels (MC) that
are 128b wide and work on 512MB of memory that is assigned to them. Address space of each
channel is subsequently divided between two 64b pseudo-channels (PC). These two PCs share
clock and command signals but have separate data buses. They interpret commands separately
and work with their own non-overlapping 256MB portion of the memory array. Therefore, on
the memory side, there are a total of 32 PCs, 64b wide each. On the user’s side, Xilinx’s HBM IP
core provides 32 AXI ports. Each AXI port corresponds to one PC. However, any packet from one
AXI port can be routed to any PC if the switching network is enabled at the cost of extra delay
and less bandwidth. These AXI ports are 256 bits wide which provides a 4:1 data width ratio over
PCs. This implies that a customized hardware on the SLRs can work with a clock frequency that

D3.4 Version 1.0 41 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

is a quarter of memory data transfer rate and yet manage to take advantage of maximum HBM
bandwidth. The maximum clock frequency allowed for memory arrays in our device is 900MHz,
and being a DDR memory, it translates to a maximum data transfer rate of 1800 Mega-Transfers
per second (MT/s).

We tune the supply voltage of our HBM stacks by accessing onboard voltage regulators through
system controller interface of VCU128 board. We have implemented custom control commands
in VHDL that communicate with HBM over UART. We also implemented controllers for the two
HBM stacks. Each controller includes 16 AXI tra�c generators (TG), one for each 16 AXI ports in
their corresponding stack. The controller is in charge of con�guring each TG, sending commands
to it, receiving its response, checking its status and reporting statistics back to the host. Each
TG implements customized macro commands that we later use to implement our test scenarios.

5.2.3. Power Measurement

Active power consumption in DRAMs is related to the square of the supply voltage (Vdd) as shown
in equation (5.1) where CL is load capacitance and f is operating frequency [3]. Therefore we
expect a similar reduction in power consumption with undervolting.

P = CL × f × V 2
dd (5.1)

We con�rm this by experimental results shown in Fig. 5.13. This �gure shows the power consump-
tion of the entire HBM at di�erent bandwidths. The maximum bandwidth we reach is 310GB/sec
aggregated for two HBM stacks.

Working within the voltage guardband (1.2-0.97 V), provides a 1.5X power saving without intro-
ducing any faults. This is regardless of the bandwidth utilization of the memory. Pushing the
supply voltage further down to 0.85V will give us a total 2.3X power saving compared to the
default 1.2V.

As for idle power, we measure the power consumption of HBM when bandwidth utilization is
zero. Even when HBM is idle, power consumption is nearly 30% of when HBM is at full load,
regardless of the supply voltage. This means disabling all AXI ports except one will result in a
3X power saving instead of 32X.

We can also use equation (5.2), where I is the operating current, to interpret power consump-
tion. Based on our experiments we already know that power consumption on the left side of
equation (5.2) depends on the square of the supply voltage. Therefore we expect that the cur-
rent consumed by HBM must drop linearly when the supply voltage scales down linearly. This is
because the operating current depends on the supply voltage too [3].

P = Vdd × I (5.2)

Our experimental results in Fig. 5.14 con�rm this expectation. As shown in this �gure, the drop
in operating currents is proportional to the drop in supply voltage at all bandwidths.

On the other hand, based on equation (5.1), if we divide our power measurement results by V 2
dd

we are left with raw values for CL×f . The dimension for these values is farad per second which
shows howmuch active capacitance is being charged/discharged every second. In this equation,
f is constant since the clock frequency of our design, clock frequency of HBM memory, and the

D3.4 Version 1.0 42 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.13. HBM stack power saving by undervolting (nominal voltage is 1.2V)

Figure 5.14. Operating current of HBM by undervolting (nominal voltage is 1.2V)

sequence that we run these tests are always the same.

Fig. 5.15 shows CL × f of our entire HBM for all bandwidth utilizations and voltages that we
tested. The active capacitance is linearly decreasing with bandwidth utilization. This is because
to decrease bandwidth we progressively disable more memory channels and the capacitance
that belongs to these channels is not charged/discharged. However, these regions of memory
still consume idle power since they are left pre-charged. As voltages are pushed down and bit
�ips start manifesting, CL×f for those voltages also drop since, with more bits that are stuck at
1 or 0, their capacitance is not active anymore. Active capacitance at 0.85V is far lower than the
rest of the voltages since it introduces orders of magnitude more faults. We discuss the detailed
reliability results in the next section.

Figure 5.15. Active portion of the memory under load. Vertical axis shows how much capacitance is being
charged/discharged every second.

D3.4 Version 1.0 43 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5.2.4. Reliability Analysis Through Accessing Data Sequentially

Fig. 5.16 shows the number of stuck-at faults we encountered for each HBM stack. Here are our
main observations:

Figure 5.16. Percent of data bits in each stack that are st1 or st0 with undervolting.

• From nominal 1.2V down to 0.97V there are no faults in the memory. Taking advantage of
this guardband region is safe since all operations can be carried out without faults.

• St0 and st1 faults start manifesting around 0.97V and 0.96V respectively. This is the be-
ginning of the unsafe region where the design needs to take these faults into account to
ensure correct operation. Reducing the voltage introduces additional faults in both sce-
narios in an exponentially growing manner until around 0.85V. This exponential growth
has already been reported on DRAMs [10], although for di�erent supply voltage range and
fault count. In this region, the number of st1 faults remains on average 13% higher than
that of st0 faults. Only two voltages behave di�erently: 0.85V and 0.88V. We believe these
are a result of within-die process variation of the stacks.

• For voltages 0.84V down to 0.81V, early signs of the system failure show up as most bits
are either st1 or st0. Working in this critical region is not suitable for any application since
large portions of memory have very high fault rate.

• In our tests, 0.80V and voltages lower than that cause a complete failure of the memory
system. Even restoring the supply voltage does not help and a power down is required.

5.2.5. Reliability Analysis Per Pseudo Channel

Fig. 5.17 shows the results of our tests on the fault rate per pseudo channel. We focused on
voltages from 0.97V (edge of voltage guardband) down to 0.81V (just above the failure point of
our HBM stacks). The number of faults is broken down for each AXI port (and their corresponding
PC). The Left and right halves of the �gure match the left and right HBM stacks in our system.
The top and bottom halves show the number of st1 and st0 faults respectively.

5.2.5.1. st1 faults

These faults start at 0.96V for both stacks. Ten PCs have these faults although the fault rate is
less than 0.0001%. With lower voltages, the fault rate for these PCs increase and other PCs start
having faulty bits too until 0.93V when all PCs have at least one faulty bit. At 0.93V, most PCs
have less than 2% st1 fault rate, except for PC5, PC18, and PC19. When we reach 0.85V, only three

D3.4 Version 1.0 44 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.17. Fault count (in Millions) for AXI ports (and their corresponding PCs). Top half is for st1 and
bottom half is for st0. Lower numbers mean a portion of memory is healthier and more reliable.

PCs have less than 1% and only 7 remain below 10% st1 fault rate. Below this point, all PCs have
at least 18% fault rate.

5.2.5.2. st0 faults

The �rst faults appear as st0 faults at 0.97V. Only four PCs experience these faults: 5, 19, 20,
and 22. As we reduce the voltage, the number of faults for these channels increase. Meanwhile,
other PCs start showing faulty behaviour too. At 0.94V, all pseudo channels have at least one
faulty bit that is stuck at 0. Fault rate of every PCs is less than 0.1% except only pseudo channel
20 that has nearly 6%. From 0.93V down to 0.90V, fault rate for PC20 goes up to 25% while �ve
other PCs reach fault rates above 1%: 4, 5, 18, 19 and 29. By the time we reach 0.87V, only nine
PCs have less than 1% fault rate. After this point, all PCs reach above 1%.

5.2.5.3. Pseudo Channel Comparison

Looking at how our two stacks behave when tested for st0 and st1 faults, we can see that some
PCs are much more sensitive to faults than others. In our left stack, PC4 and PC5 are more
sensitive than others: their faulty behaviour starts sooner than most others and they reach
signi�cant fault count before others. They reach 10% fault rate at 0.93V while the rest of the PCs
in left stack start at 0.89V and all of them reach 10% or more around 0.86V.

As for right stack, PC18, PC19 and PC20 are more sensitive than others. Similar to PC4 and PC5,
these PCs reach 10% fault rate at 0.93V while other PCs in right stack start having similar fault
rates at 0.89V. This behaviour is due to process variation, some channels are weaker than others
where more cells cannot keep their state. When the supply voltage is at 0.86V, all PCs from stack
right have 10% fault rate similar to left stack.

5.2.5.4. Stack Comparison

Our experiments show that both stacks have a few PCs that are sensitive than others. Even the
voltages that these PCs have signi�cant changes in behaviour, such as reaching 10% threshold,
are similar.

D3.4 Version 1.0 45 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.18. Number of PCs that can be used under di�erent thresholds (showing the sum of st0 and st1
faults). Bigger numbers mean larger portions of memory are accessible.

5.2.5.5. Individual pseudo-channel observations

We understand that not applications have the same level of tolerance for faults when it comes
to memory. Also, faults are not distributed uniformly across our HBM. Therefore we need an
assessment of how much of our HBM can be used for a certain level of fault rate. Fig. 5.18
shows the number of PCs that can be used at each voltage based on an acceptable fault rate.
Since pushing supply voltage down creates faults, the amount of power saving that a particular
application can get with undervolting depends on how much memory that application needs
and what fault rate it can tolerate in those regions of memory.

Those applications that cannot tolerate any faults and need the entire memory’s address space
available, have to work only in the guardband region of supply voltage which starts at nominal
1.2V and ends above 0.97V. Applications that work with a smaller amount of memory as long as
that memory is fault-free, are able to push voltage further down to 0.95V at cost of disabling 25
PCs.

Those applications that are able to tolerate some faults as long as the rate of those faults is less
than a certain threshold, will have more memory to work with. For example, an application that
can tolerate a maximum of 1% fault rate and requires nearly half the memory (4GB in our case)
can push voltage down to 0.88V and get nearly 2X power saving. A 2.3X power saving is possible
if the application can tolerate up to 50% fault rate and is willing to work with only 9 PCs out of
32.

5.3. Intel SGX Framework Comparison

In LEGaTO project, we develop security mechanisms based on TEEs, e.g., Intel SGX or ARM Trust-
Zone to ensure the integrity and con�dentiality of legacy applications. However, the security
guarantees come with performance overhead. To understand this overhead, we have devel-
oped the performance monitoring framework TEEMon [16] which has been reported in Deliv-
erable D4.2. We use TEEMon to measure the overhead of Intel SGX frameworks such as SGX-
LKL [26], and Graphene-SGX [29] and our toolchain SCONE [4]. We conduct this experimental
evaluation to show that TEEMon is designed in a generic way so that it can be used for di�erent
Intel SGX frameworks without changing their source code; as well as to show the advantages
of our toolchain SCONE compared to other SGX frameworks. In addition, we also demonstrate

D3.4 Version 1.0 46 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

that based on the performance metrics and statistics provided by TEEMon, we can identify the
cause of bottlenecks of these SGX frameworks. We focus on a head-to-head comparison using
the Redis in-memory key-value store as application, deployed and run inside Intel SGX enclaves
using these SGX frameworks.

We benchmarked Redis (v5.0.5) running inside SGX enclaves using SGX-LKL,1 SCONE,2 andGraphene-
SGX.3 These SGX frameworks can run legacy applications Intel SGX without changing their code,
simply by recompiling or relinking Redis using their provided compilation toolchains.

While Redis was executed directly on the host, we adapted the con�guration of Redis to allow for
stable execution with all frameworks. Foremost, we disabled the periodic creation of persistent
snapshots, it requires the availability of the fork() system call within the SGX-enclave, which
is not available in SGX-LKL and Graphene-SGX. Furthermore, we con�gured Redis to use at most
1 GB of memory, i.e., the heap size of the enclave con�gured for all SGX frameworks.

We make use of the memtier_benchmark suite4 to measure the performance of Redis and con-
�gure it to use 8 concurrent threads for optimal performance. Hence, the indicated number of
connections is always a factor of 8.

First, we pre-populate the database with 720 000 keys. During themeasurements, the benchmark
issues GET requests. The memtier_benchmark is con�gured to use a pipeline of 8 requests and
8 connections per client-thread as these settings provided the best results in preliminary tests.
We run experiments with di�erent Redis database sizes (78 MB, 105 MB, and 127 MB) by setting
the size of values (in the key-valuemessages) of 32 , 64 , and 96 bytes, respectively. The reasonwe
conducted the experiments with di�erent database sizes is that the most current SGX hardware
supports only ∼94 MB EPC size for applications running inside enclaves. When more memory is
required, the applications inside enclaves need to perform the paging mechanism, usually very
expensive performance-wise.

Next, we �rst present the performance comparison of Redis running with di�erent SGX frame-
works. Then, we describe how to use performance metrics captured by TEEMon to identify the
bottlenecks of these SGX frameworks.

5.3.1. Performance Comparison

In the following, we discuss the performance measurements for Redis running with Intel SGX
using SGX-LKL, SCONE, and Graphene-SGX. Note that the native version in this experiment is the
vanilla Redis running without Intel SGX.

Throughput. Figure 5.19 shows the throughput of Redis using the di�erent SGX frameworks.
The native Redis achieves the throughput of 1.01 M - 1.2 M input/output operations per sec-
ond (IOP/s) with di�erent Redis database sizes at 320 client connections (Figure 5.19 (a)). The
throughput of native Redis decreases when the number of connections is higher than 320. This is
because, above 320 client connections, the host’s network is squeezed at its capacity of 1 GBps.

Meanwhile, Figure 5.19 b depicts a similar behavior of throughput of Redis running with SCONE.
Themaximum throughput of SCONE is 278 KIOP/s at 560 connections (∼23% throughput of native
Redis). The throughput of Redis with SCONE drops when the database size increases due to the
EPC limitation of the SGX hardware. Increasing the database size from 87 MB to 105 MB reduces

1Commit �8a1a3d, master branch.
2Commit fab5a2b7c, master branch.
3Commit e98be31, master branch.
4https://github.com/RedisLabs/memtier_benchmark

D3.4 Version 1.0 47 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://github.com/RedisLabs/memtier_benchmark

(a) Native (b) SCONE

(c) SGX-LKL (d) Graphene-SGX

Figure 5.19. The throughput comparison between native Redis and Redis with di�erent SGX frameworks. The
total memory usage of Redis is set to di�erent sizes of 78 MB, 105 MB, and 127 MB.

(a) Native (b) SCONE

(c) SGX-LXL (d) Graphene-SGX

Figure 5.20. The latency comparison between native Redis and Redis with di�erent SGX frameworks. The
total memory usage of Redis is set to di�erent sizes of 78 MB, 105 MB, and 127 MB.

(a) Throughput Comparison (b) Latency Comparison

Figure 5.21. The throughput and latency comparison between native Redis and Redis with di�erent SGX-
frameworks. The total memory usage of Redis is set to 78 MB.

D3.4 Version 1.0 48 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(a) User-space page faults per node (b) Page-faults per node

(c) Last-Level-Cache Misses per node (d) Evicted EPC pages per node

(e) Context switches monitored per PID (f) Context switches per node

Figure 5.22. The detailed statistics of monitored performance metrics of native Redis and Redis running
inside SGX enclaves using di�erent SGX frameworks. The experiments are conducted with di�erent con�g-
urations: 8 connections and 78 MB database size (8 C-S); 8 connections and 105 MB database size (8 C-L);
320 connections and 78 MB database size (320 C-S); 320 connections and 105 MB database size (320 C-L);
580 connections and 78 MB database size (580 C-S); and for 580 connections and 105 MB database size (580
C-L).

the peak performance of Redis with SCONE by 32 KIOP/s (decrease of 12%). Further increasing
the database size to 127 MB decreases the peak performance at 29 KIOP/s.

Figure 5.19 c shows the results for the throughput of Redis with the SGX-LKL framework. While
Redis with SGX-LKL peaks at 320 connections with 121 KIOP/s (∼10%of native Redis throughput),
our results also show a steep drop in performance of Redis with SGX-LKL at 560 connections with
a steady increase afterward.

Figure 5.19 d shows that, di�erently from the other SGX frameworks, Graphene-SGX performs best
for one client (8 connections) and exhibits a reduced performance for more connections. The
peak performance of Graphene-SGX was measured at 20 KIOP/s for 8 connections, (∼1.6% of na-
tive Redis throughput). Similar to SCONE, Figure 5.19 d shows a drop in throughput of Graphene-
SGX if the database size increases from 78 MB to 105 MB. For a single client, the throughput
decreases from 20 KIOP/s to 12 KIOP/s.

D3.4 Version 1.0 49 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Latency. Figure 5.20 presents the Redis latency comparison between the di�erent SGX frame-
works. As expected, the latency of all evaluated systems increases when the number of con-
nections increases. At 320 connections, the latency of the native Redis is ∼2 milliseconds (ms),
whereas the latency of Redis with SCONE, SGX-LKL, and Graphene-SGX are ∼9 ms, ∼20 ms, and
∼249 ms, respectively. All latency measurements show an overall similar correlation between
the number of connections and the latency. However, Redis with Graphene-SGX imposes a signif-
icantly higher latency compared to other frameworks. Figure 5.21 a and b show a performance
comparison of native Redis and Redis with di�erent SGX frameworks, with a database size of
78 MB and an increasing number of clients connections. In general, these results only show the
overall performance trends of the SGX frameworks. To understand the insights of these SGX
frameworks, we analyze the detailed performance metrics data during runtime and identify the
bottlenecks using TEEMon.

5.3.2. Performance Metrics Analytics

Figure 5.22 presents the performancemetrics statistics data of native Redis and Redis with di�er-
ent SGX frameworks, collected during benchmarks as described in §5.3.1. All presented statistics
and data are similarly presented by the TEEMon front-end during a monitoring session.

Page Faults. Figure 5.22 a and Figure 5.22 b show the page faults in user space for Redis and
the total page faults per host during the benchmark, respectively. The user space page faults
include: no_page_found, write_prot_fault, write_fault and instr_fetch_fault.

While Figure 5.22 a indicates an overall low rate of user space page faults, it also shows that
native Redis causes no page faults in user space. For the SGX frameworks, the rate of user space
page faults increases with database sizes exceeding the EPC size (∼94 MB). This happens when
the SGX-enabled Redis reads data that was previously swapped out of the EPC and is unavailable
for the current request. For 320 and 580 connections, with the database size of 105MB, Redis with
SCONE reaches the peaks of 0.069 and 0.064 user space page faults. Graphene-SGX and SGX-LKL
show a similar pattern of page faults with∼0.03 page faults per 100 requests for larger database
sizes. While SCONE and SGX-LKL introduce negligible page faults (e.g., almost no page fault) with
the database size of 78 MB which �ts into EPC, the measurements show that Graphene-SGX still
has the number of page faults of 0.02 per 100 requests.

In contrast to the low rate of user level page faults, Figure 5.22 b shows that on host-wide scope
more page faults are registered. Native Redis has 607 total page faults per 100 GET requests
for 8 connections, however, this number decreases (<170 page faults) for larger numbers of
connections. This closely follows the �nding that few connections lead to context switches in
native Redis. While SCONE and SGX-LKL have the page fault rates increasing from 500 to 2200

total page faults per 100 GET requests, Graphene-SGX has a signi�cant number of total page
faults. For 580 connections and database size of 105 MB, Graphene-SGX has 8996 total page
faults per 100 requests on average.

Last Level Cache Misses. Figure 5.22 c illustrates the last level cache (LLC) misses during the
benchmark. Compared to native Redis, all SGX frameworks induce an elevated rate of LLCmisses.
With native Redis we observe 1.8−23 LLC misses per 100 GET requests. Instead, SCONE and SGX-
LKL achieve similar (yet higher) rates, i.e., 29 to 103 LLC misses per 100 GET requests. Graphene-
SGX has the highest LLC misses: 91 for 8 connections and 78 MB database size, and up to 161 LLC
misses for 580 connections with 105 MB database size (per 100 GET requests).

Evicted EPC Pages. Figure 5.22 d shows the measured evicted pages from the enclave page cache

D3.4 Version 1.0 50 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(EPC).

Graphene-SGX has at most 0.02 evicted pages per 100 GET requests for the database size of
78 MB which �ts in the EPC. For the database size of 105 MB, Graphene-SGX exhibits at most 0.03
evicted pages per 100 GET requests. SGX-LKL shows a very similar behavior with up to 1.6 evicted
pages (per 100 GET requests) for the database size of 78 MB and up to 1.7 evicted pages with
the database size of 105 MB. Meanwhile, SCONE has a stark increase of evicted pages compared
to other SGX frameworks.

With the number of connections of 580 and for the database size of 105 MB, SCONE has 137

evicted pages per 100 GET requests. We attribute the di�erences to the individual implementa-
tion and potential shortcomings of the framework’s enclave memory management.

Context Switches. A common cause of SGX performance overheads is costly enclave transitions.
The context switches were �ltered by PID, to make it easier to monitor speci�c applications in
the system. Figure 5.22 e shows these results and indicates that per 100 GET requests, Redis with
SGX-LKL hits the most context switches. Instead, native Redis exhibits 0.14 context switches per
100 requests for the evaluation with just 8 connections. Since Redis uses an event queue and in
combination with the �ndings shown in Figure 5.19 a, we conclude that, for 8 connections, Redis
often waits (sleeps) for new messages and thereby causes context switches. With the exception
of Graphene-SGX, SCONE and SGX-LKL show a similar pattern for 8 connections.

Figure 5.22 f shows the number of total context switches on the host while the GET requests are
issued. The Figure suggests the total (host-wide) context switches of Redis with Graphene-SGX
increases dramatically (up to 12×) compared to Redis with other SGX frameworks and native
Redis. For 580 connections with a database size of 105 MB, Redis with Graphene-SGX has 304

context switches per 100 GET requests, while native Redis has only 37. SCONE and SGX-LKL
expose a similar pattern as native Redis, with at most 125 context switches per 100 GET requests.
We believe that Graphene-SGX has the lower performance as shown in Figure 5.21 because it has
signi�cantly more context switches than the other frameworks as reported by TEEMon.

Note that Figure 5.22 e shows only the context switches by Redis process itself, including its
threads while Figure 5.22 f shows the total (host-wide) amount of context switches which in-
cludes the context switches between kernel processes aswell as context switches to theksgxswapd
(Intel® SGX swapping daemon) process.

In summary, in this experiment, we show that TEEMon provides detailed performance data dur-
ing runtime (e.g., cache misses, context switches, page faults, evicted EPC pages, etc) of ap-
plications (e.g., Redis) running inside Intel SGX which helps us to understand the performance
behavior of the applications. The presented performance metrics by TEEMon are helpful for
developers using SGX frameworks to identify performance issues and to provide guidance for
improving the performance of these frameworks, especially with regard to scarce resources such
as EPC memory and the expensive enclave exit and enter operations (due to system calls). This
is achieved by presenting valuable graphs that show, e.g., high occurrences of the clock_gettime
system call dominating the desired read-write system calls for network IO. While di�erent met-
rics could in principal be gathered individually with di�erent tools, TEEMon provides a single
frontend for continuous and e�ortless monitoring of application to analyse their behavior in
a production ready environment. In addition, we also demonstrate that our toolchain SCONE
incurs less overhead compared to other SGX Frameworks. In LEGaTO project, SCONE has been
used to develop a secure machine learning framework [18], a secure distributed data analytics

D3.4 Version 1.0 51 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

framework [19], a secure software update mechanism [22], and more.

6. Conclusion
In conclusion, this deliverable has evaluated the contributions described by D3.3 ("Final release
of the task-based runtime"). This work package considered the middleware (interface to LEGaTO
hardware and resource description), the back-end (energy-e�cient mapping and utilization of
hetergeneous hardware, and locality-aware execution), increased energy-e�cient usage of FP-
GAs (via undervolting), and support for fault-tolerance and security (GPU and FPGA checkpoint-
ing and trusted execution). The RECS Master management software has shown resilience against
data loss after potential shutdowns, and the Ethernet management architecture has been re-
worked by building a fabric over all Ethernet switches. XiTAO’s Energy-Aware Scheduler (EAS)
relies on a combination of per-task energy prediction and resource selection, and energy sav-
ing techniques during events of core under-utilization. Overall, by combining these techniques,
it obtains energy savings up to 81% when compared to random work stealing on an asymmet-
ric NVIDIA TX2 platform. The locality-aware scheduler that adopts the XiTAOs topologies shows
that leveraging a highly dynamic scheme outperforms locality maximizing schemes by up to 30%
for both classes of applications. Also, based on the performance trace of compute-bound and
memory-bound task types, the scheduler shows the ability to tune the resources oblivious of
prede�ned user-level annotations. OmpSs@FPGA has shown an e�ciency of up to 7.32 GFlop-
s/W using 2xIP core instances. Using the distributed variant of the OmpSs, i.e. OmpSs@Cluster,
the Smart-Mirror use-case has an energy consumption up to 25W for the single node imple-
mentation, whereas in the OmpSs-2@Cluster, this dropped to 13W for the �rst node with 10W
consumption for the per-processing of the raw captured image (i.e. scaling), and total of 17W for
the second Xavier node. Undervolting has been shown to be an e�ective energy saving tech-
nique. Experimental results showed a 2.3X energy saving using HBM undervolting at all band-
width utilizations. The checkpointing library has transparently worked with CPU, GPU and FPGAs
under the same API. It has demonstrated the low-overhead, making heterogeneous computing
more resilient and fault-tolerant. Finally, we have shown a performance comparison between
state-of-the-art Intel SGX frameworks using the monitoring tool TEEMon, the �rst continuous
performance monitoring and analysis tool for TEE-based applications. Using TEEMon, we have
demonstrated that our toolchain SCONE incurs less overhead compared to other SGX Frame-
works.

7. References
[1] Heat distribution. https://github.com/leobago/fti.

[2] Xilinx zynq-7000 soc zc702 evaluation kit. https://www.xilinx.com/products/
boards-and-kits/ek-z7-zc702-g.html.

[3] Calculating Memory Power for DDR4 SDRAM. Technical report, Micron Technology, Inc., 2017.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian
Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Kee�e, Mark L. Stillwell, David Goltzsche,
Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure linux con-
tainers with intel SGX. In 2016 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), OSDI ’16, pages 689–703. USENIX Association, 2016.

D3.4 Version 1.0 52 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://github.com/leobago/fti
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html

[5] Barcelona Supercomputing Center. Ompss-2 speci�cation. https://pm.bsc.es/ftp/ompss-
2/doc/spec. (Online; Last access: 11.05,2020).

[6] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya
Maruyama, and Satoshi Matsuoka. Fti: high performance fault tolerance interface for hybrid
systems. In Proceedings of 2011 international conference for high performance computing,
networking, storage and analysis, pages 1–32, 2011.

[7] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: An E�cient Multithreaded Runtime System. In Proceedings of
PPoPP ’95. ACM, July 1995.

[8] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720–748, September 1999.

[9] Jaume Bosch, Xubin Tan, Antonio Filgueras, Miquel Vidal Piñol, Marc Mateu, Daniel Jiménez-
González, Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, and Jesús Labarta. Application
acceleration on fpgas with ompss@fpga. 12 2018.

[10] Kevin K. Chang and Others. Understanding Reduced-Voltage Operation in Modern DRAM
Devices. Measurement and Analysis of Computing Systems, 1(1), 6 2017.

[11] Quan Chen, Minyi Guo, and Haibing Guan. Laws: Locality-aware work-stealing for multi-
socket multi-core architectures. In Proceedings of the 28th ACM International Conference
on Supercomputing, ICS ’14, pages 3–12, New York, NY, USA, 2014. ACM.

[12] christmann informationstechnik + medien GmbH & Co.KG. Extended Red�sh API documen-
tation. https://christmann.github.io/recs-red�sh-api/index.html, 2020. (Online; Last ac-
cess: 28.10.2020).

[13] Kallia Chronaki, Alejandro Rico, Rosa M. Badia, Eduard Ayguadé, Jesús Labarta, and Mateo
Valero. Criticality-aware dynamic task scheduling for heterogeneous architectures. In Pro-
ceedings of the 29th ACM on International Conference on Supercomputing, ICS ’15, pages
329–338, New York, NY, USA, 2015. ACM.

[14] Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguade.
Barcelona openmp tasks suite: A set of benchmarks targeting the exploitation of task par-
allelism in openmp. In Proceedings of the 2009 International Conference on Parallel Pro-
cessing, ICPP ’09, pages 124–131, 2009.

[15] D.A. Knoll and D.E. Keyes. Jacobian-free newton–krylov methods: a survey of approaches
and applications. Journal of Computational Physics, 193(2):357 – 397, 2004.

[16] Robert Krahn, Donald Dragoti, Franz Gregor, Do Le Quoc, Valerio Schiavoni, Pascal Felber,
Clenimar Souza, Andrey Brito, and Christof Fetzer. TEEMon: A continuous performancemon-
itoring framework for TEEs. In Proceedings of the 21th International Middleware Conference
(Middleware), 2020.

[17] A Kukanov and M Voss. The foundations for scalable multi-core software in intel threading
building blocks. Intel Technology Journal, 11:309–322, 2007.

[18] Do Le Quoc, Franz Gregor, Sergei Arnautov, Roland Kunkeland, Pramod Bhatotia, and
Christof Fetzer. secureTF: A Secure TensorFlow Framework. In Proceedings of the 21th In-
ternational Middleware Conference (Middleware), 2020.

D3.4 Version 1.0 53 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

[19] Do Le Quoc, Franz Gregor, Jatinder Singh, and Christof Fetzer. Sgx-pyspark: Secure dis-
tributed data analytics. In Proceedings of the World Wide Web Conference (WWW), 2019.

[20] James MacQueen et al. Some methods for classi�cation and analysis of multivariate ob-
servations. In Proceedings of the �fth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[21] Jun Nakashima and Kenjiro Taura. Massivethreads: A thread library for high productivity
languages. 8665:222–238, 2014.

[22] Wojciech Ozga, Do Le Quoc, and Christof Fetzer. A practical approach for updating an
integrity-enforced operating system. In Proceedings of the 21th International Middleware
Conference (Middleware), 2020.

[23] J. M. Perez, V. Beltran, J. Labarta, and E. Ayguadé. Improving the integration of task nesting
and dependencies in openmp. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 809–818, 2017.

[24] Miquel Pericàs. Elastic places: An adaptive resource manager for scalable and portable
performance. ACM Trans. Archit. Code Optim., 15(2):19:1–19:26, May 2018.

[25] Miquel Pericàs. Final release of the task-based runtime. Technical Report D3.3, May 2020.

[26] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui, Vasily A Sar-
takov, and Peter Pietzuch. SGX-LKL: Securing the host OS interface for trusted execution. In
arXiv:1908.11143, 2019.

[27] A. Rigo, C. Pinto, K. Pouget, D. Raho, D. Dutoit, P. Martinez, C. Doran, L. Benini, I. Mavroidis,
M. Marazakis, V. Bartsch, G. Lonsdale, A. Pop, J. Goodacre, A. Colliot, P. Carpenter, P. Rado-
jković, D. Pleiter, D. Drouin, and B. Dupont de Dinechin. Paving the way towards a highly
energy-e�cient and highly integrated compute node for the exascale revolution: The exan-
ode approach. In 2017 Euromicro Conference on Digital System Design (DSD), pages 486–493,
2017.

[28] Rubén Cano Díaz. Communication in task-based runtimes for heterogeneous systems. Mas-
ter Thesis, 2020.

[29] Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-SGX: A practical library OS for un-
modi�ed applications on SGX. In Proceedings of USENIX ATC, 2017.

[30] Micha vor dem Berge. Final report on development and optimization of use-cases and
integration. Technical Report D5.3, November 2020.

[31] Xilinx, Inc. Virtex UltraScale+ HBM VCU128-ES1 FPGA Evaluation Kit.

[32] A.B. Yoo, M.A. Jette, and M. Grondona. Slurm: Simple linux utility for resource management.
In Proceedings of the 9th Job Scheduling Strategies for Parallel Processing, pages 44–60.
LNCS, Springer, Berlin, Heidelberg, 2003.

D3.4 Version 1.0 54 / 54

 DX.Y Version 1.0 1 / 4 DX.Y “TITLE OF THE DELIVERABLE” Version 1.0 Document Information Contract Number 780681 Project Website https://legato-project.eu/ Contractual Deadline Dissemination Level Nature Author Contributors Reviewers The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

	Executive Summary
	Introduction
	Middleware integration and improvement
	SLURM integration with the middleware
	Slurm configuration
	Job descriptions
	Job flow

	Improvement of hardware management and APIs

	Energy-efficient task-based runtime
	XiTAO
	Evaluation of XiTAO Software Topologies
	The XiTAO heterogeneous scheduler
	Support for Pipeline Parallelism
	Pipelined execution of VGG-16

	OmpSs
	OmpSs@FPGA, OpenCL and CUDA
	OmpSs@Cluster
	Smart-Mirror/OmpSs@Cluster

	Runtime support for Fault Tolerance and Security
	FPGA Checkpointing
	Host-based Checkpointing
	Checkpointing partial work of the FPGA task
	Environment
	Applications
	Host-Based FTI
	Partial FPGA Task Checkpointing

	Unvervolting High-Bandwidth Memories
	Structure of HBM
	Hardware Under Test
	Power Measurement
	Reliability Analysis Through Accessing Data Sequentially
	Reliability Analysis Per Pseudo Channel

	Intel SGX Framework Comparison
	Performance Comparison
	Performance Metrics Analytics

	Conclusion
	References

