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1. Executive Summary
This deliverable contains the first detailed report on energy-e�icient, secure, re-
silient task-based programming model and compiler extensions. It goes along
with the first release of compiler extensions, checkpointing tools and other com-
ponents. It is issued at the same time as Deliverable 3.2, and includes many
components that complement the ones presented there.

The text of this deliverable reports the status of the LEGaTO tool chain frontend
(work package 4) at the end of month 20 of the project, and is organized in
four main technical chapters. It covers (1) compiler support and development
environment, (2) dataflow engines integration, (3) energy e�iciency, and (4) fault-
tolerance mechanisms.

Chapter 3 details the extensions for the OmpSs compiler and Eclipse integrated
development environment. It describes the compiler interface for a fault-tolerant
library. It also includes a presentation of the LEGaTO model with implementation
details and evaluation. It then presents Eclipse plugins developed in LEGaTO.

Chapter 4 presents the DFiant dataflow hardware description language. DFiant
is embedded in Scala and abstracts away registers and clocks, bringing together
constructs and semantics from dataflow hardware and modern programming
languages. It also presents LEGaTO’s work on task-based kernel identification
(in OmpSs) and mapping on Maxeler dataflow engine graphs.

Chapter 5 describes LEGaTO’s work on programming and execution models in-
tegrating CPU and FPGA, energy-e�iciency and security trade-o�s, and a task-
based scheduler. LEGaTO models are presented, including transformations for
running combined CPU and GPU applications. It also presents a task-based
scheduler for containerised applications and a detailed analysis of several trusted
execution environments. The same chapter contains a study on performance
and energy when using trusted execution environments.

Chapter 6 presents the LEGaTO components for fault-tolerance and security.
The first part describes a performance monitoring framework for trusted execu-
tion environments. The second part presents and evaluates a library for fault-
tolerant implementation of task-based applications with checkpointing.

2. Introduction
LEGaTO is a Horizon 2020 research and innovation action to develop advanced
techniques to make it easier to build large performance-hungry applications.
The intention of these techniques is to be able to attain high performance and
yet save energy while o�ering adequate security and fault-tolerance. These re-
quirements compete against each other, so LEGaTO aims at finding adequate
trade-o�s by using multiple heterogeneous computers that incorporate central
processing units (CPUs), field-programmable gate arrays (FPGAs), and graphics
processing units (GPUs). To achieve application development under these con-
straints, we are building a tool chain that maps applications written in a high-
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level task-based dataflow language onto these heterogeneous platforms.

The tools developed in WP4 are intended for high productivity, performance,
security and fault tolerance. These aspects function as requirements for many
components being designed. Each component presents di�erent ways of tack-
ling the these requirements, working at di�erent levels, and o�en obtaining
trade-o�s between two or more aspects. Moreover, the components in WP4 are
developed in tight integration with the work done in WP3.

This deliverable describes the first release of the front-end system that is be-
ing developed in LEGaTO’s Work Package 4 (WP4) — Tool-Chain Front-End — to
support applications at compilation and runtime. The lower-level runtime and
library aspects of this tool chain are covered in the Deliverable D3.2 of Work Pack-
age 3 (WP3) — Tool-Chain Back-End. Figure 2.1 highlights the tool-chain front end
components, developed in WP4, and gives an overview of the remaining compo-
nents.

Midterm Review, Brussels

T4.1: Definition/design
[front-end toolbox — completed]

12.7.2019 5

Front-end

Figure 2.1. Focus on the front-end tool chain components within the entire LEGaTO frame-
work.

WP4 has seven tasks, as presented below, and each task pushes forward a dif-
ferent aspect in the development of a number of components.

• Task 4.1: Definition / Design (M1-9)

• Task 4.2: Programming Model features for energy e�iciency (M1-36)

• Task 4.3: IDE plugin (M7-36)

• Task 4.4: Compiler support (M7-30)

• Task 4.5: High-level Synthesis for FPGA (M1-36)
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• Task 4.6: Task-based kernel identification/DFE mapping (M7-36)

• Task 4.7: Fault Tolerance and Security (M1-36)

Task 4.1 ended at month 9 and most of its work has been reflected into Chapter
4 of Superdeliverable SD1 [91]. The remaining tasks (4.2–4.7) are intended to run
throughout almost the entire project, and will develop di�erent components of
the front-end tool chain. Their first technical and scientific output is presented
in this deliverable, as a partially-integrated catalogue of components, imple-
mented in the first 20 months.

Task 4.1, Definition/Design presented in SD1 a comprehensive set of functional-
ities designed to be o�ered as front-end tools for programming applications. A
so�ware architecture was introduced with all main aspects on which LEGaTO is
focused (fault-tolerance, heterogeneity, multicomputer execution, energy e�i-
ciency and the extension of the programming model). It also provided a number
of extensions to be implemented in the infrastructure management to support
the execution of the proposed task model.

Task 4.2, Programming Model Extensions for Energy E�ciency, works on defining
of the execution model and the programming model for the tool chain, speci-
fying what needs to be supported by the runtime. This task has so far defined
the overall so�ware development flow and an execution model. Programming
is driven by OmpSs [40], executing tasks (natively or externally generated) in
di�erent hardware resources such as CPUs, GPUs and FPGAs. Running on FP-
GAs requires partitioning the CPU cores between two di�erent runtimes, one for
FPGA and another one for CPU. Secion 5.1 in Chapter 5 describes the resource
sharing between these runtimes.

Also in Task 4.2, we worked on analysing energy-e�iciency and security trade-
o�s, with multiple types of hardware such as Intel SGX and AMD SEV. This analysis
was used in the design of a task-based scheduler called HEATS. Both the anal-
ysis and the task-based scheduler are described respectively in Section 5.3 and
Section 5.2 in Chapter 5.

Task 4.3, IDE plugin, incorporates OpenMP and OmpSs support into Eclipse. We
developed plugins to propose directives for parallel tasks and work sharing, as
decribed in Section 3.2 of Chapter 3. Consequently, Eclipse is capable of suggest-
ing directives and clauses while the programmer is typing. Our plugins can also
automatically invoke the appropriate compiler (including Mercurium for FPGA
with autoVivado).

Task 4.4, Compiler support, works on extending the OmpSs compiler to support
all novel functionalities proposed in LEGaTO. In the first 20 months, we improved
the support for autoVivado, to compile OmpSs applications which target Xilinx
FPGAs, and extended support for discrete Alpha-Data FPGAs. Additionally, we
extended the compiler to support the Fault-Tolerance Interface (FTI) developed
in Task 4.7, as presented in Section 3.1 of Chapter 3.

Task 4.5, High-level Synthesis for FPGA, comprises the design, implementation
and integration of DFiant, a Scala-embedded hardware description language
that leverages dataflow semantics to decouple functionality from implemen-

D4.2 Version 1 10 / 65

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 



tation constraints. DFiant enables describing hardware by using the dataflow
firing rule as a logical construct, combining modern so�ware language features
with classic HDL traits. Section 4.1.1 in Chapter 4 is devoted to presenting DFiant
and its current implementation and usable feature status.

Task 4.6, Task-based kernel identification / DFE mapping intends to identify
static sub-graphs for FPGA and DFE mapping on task-based applications. Max-
eler and BSC have collaborated to use OmpSs programming model as a front-
end for Maxeler’s dataflow compute kernel generation. This collaboration is still
on-going and is described in Section 4.2 of chapter 4.

Task 4.7, Fault Tolerance and Security, extends the front-end tool-chain imple-
mentation concerning fault-tolerance and security features. To understand the
overhead generated by trusted execution environments, we developed a mon-
itoring framework. The framework, as described in Section 6.1 in Chapter 6,
helps to produce meaningful performance metrics and allows to identify the
main overhead contributors. We also developed and assessed a checkpoint (and
restart) library to be integrated inside the runtime system. This resulted in a
multilevel library with features for local checkpointing and data replication, as
described in Section 6.2, also in Chapter 6.

3. Compiler Support and Development Environment
This chapter gives technical details of the work done in WP4 concerning exten-
sions in the OmpSs compiler and Eclipse Che Integrated Development Environ-
ment (IDE). The results presented in this chapter are outcomes of Tasks 4.3 and
4.4. Section 3.1 details the compiler interface for a fault-tolerant library devel-
oped in LEGaTO. It includes a presentation of its model, a number of imple-
mentations details, and an evaluation of the interface. Section 3.2 presents the
plugin extensions we developed for Eclipse Che in order to o�er a well suited
IDE for LEGaTO and its programming model. The section includes details of the
Eclipse plug-ins implemented.

3.1. Compiler Support for Fault Tolerance
In this section we present source-to-source compiler support that translates
pragma directives to FTI library API calls. By doing so we provide to the de-
veloper a uniform programming paradigm. OMPss task specification is based
on pragma directives, therefore providing also the fault tolerance support with
pragma directives reduces the programmers e�ort, and also decouples the un-
derlying API-calls with simple pragmas. The pragma support is called OpenCHK.

3.1.1. OpenCHK Model

In Figure 3.1 we present the pragma directives of a sample code, on the le� we
present the source code containing FTI direct API calls whereas on the right we
present an implementation with pragma directives.

The model supports four directives. Some of them also may be annotated with
clauses that can modify their semantic in some way. Details on both directives
and clauses are provided as follows.
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1 i n t main ( i n t argc , char * argv [ ] ) {
2 i n t rank , nbProcs ;
3 double *h , * g ;
4 i n t i ;
5 MPI_ In i t (&argc , &argv ) ;
6 FTI_Init ( argv [ 1 ] , MPI_COMM_WORLD) ;
7 i n t CkptLVL = ato i ( argv [ 2 ] ) ;
8 MPI_Comm_size ( FTI_COMM_WORLD , &nbProcs ) ;
9 MPI_Comm_rank ( FTI_COMM_WORLD , &rank ) ;

10 h = ( double * ) malloc ( s i z e o f ( double ) *nElements ) ;
11 g = ( double * ) malloc ( s i z e o f ( double ) *nElements ) ;
12 i n i t D a t a (&h,&g ) ;
13 FTI_Protect (0 , &i , 1 , FTI_INTG ) ;
14 FTI_Protect ( 1 , h , nElements , FTI_DBLE ) ;
15 FTI_Protect ( 2 , g , nElements , FTI_DBLE ) ;
16 for ( i = 0 ; i < N ; i ++ ) {
17 i f ( ( i % 1000) == 999)
18 FTI_Checkpoint ( i , CkptLVL ) ;
19 performComputations ( h , g , i ) ;
20 }
21 FTI_Finalize ( ) ;
22 MPI_F ina l i ze ( ) ;
23 }

1 i n t main ( i n t argc , char * argv [ ] ) {
2 i n t rank , nbProcs ;
3 double *h , * g ;
4 i n t i ;
5 i n t CkptLVL = ato i ( argv [ 2 ] ) ;
6 MPI_ In i t (&argc , &argv ) ;
7 #pragma chk init comm(mpi_communicator)
8 MPI_Comm_size ( mpi_communicator , &nbProcs ) ;
9 MPI_Comm_rank ( mpi_communicator , &rank ) ;

10 cudaMallocManaged(&h , s i z e o f ( double ) *nElements ,
f l a g s ) ;

11 cudaMalloc (&g , s i z e o f ( double ) *nElements ) ;
12 i n i t D a t a (&h,&g ) ;
13 #pragma chk load (i, h[0:nElements], g[0:nElements])
14 for ( i = 0 ; i < N ; i ++ ) {
15 #pragma chk store (i, h[0:nElements], g[0:nElements]) \
16 if((i%1000) == 999) id(i) level(CkptLVL)
17 performComputations ( h , g , i ) ;
18 }
19 #pragma chk shutdown
20 MPI_F ina l i ze ( ) ;
21 }

Figure 3.1. Source code using FTI. FTI API calls and variables are marked as red. On the
left side we demonstrate the original FTI and on right side we present the extended FTI
with GPU support.

1. init [clauses]: The init directive defines the initialization of a check-
point context. A checkpoint context is necessary to use the other directives.
It accepts the clause:

• comm(comm-expr): comm-expr becomes the MPI communicator that
should be used by the user in the checkpoint context that is being cre-
ated. This clause is mandatory.

2. load(data-expr-list) [clauses]: This directive triggers a load of
the data expressed inside the parentheses. The load directive accepts the
clause:

• if(bool-expr): The if clause is used as a switch-o� mechanism:
the load will be ignored if the bool-expr evaluates to false.

3. store(data-expr-list) [clauses]: The store directive may request
the library to save the specified data. It accepts the clauses:

• if(bool-expr): The if clause is used as a switch-o� mechanism:
the store will be ignored if the bool-expr evaluates to false.

• id(integer-expr): Assigns an identifier to the checkpoint. This
clause is mandatory for the store directive.

• level(integer-expr): Selects the checkpoint level which is asso-
ciated with where is the data stored (e.g., local node storage, parallel
file system, etc.). This clause is mandatory for the store directive. More
details about the levels are provided in section 6.2.2.

• kind(kind-expr): Selects the checkpoint kind. Currently, two kinds
are supported. They are CHK_FULL, which performs a full checkpoint;
and CHK_DIFF, which performs a di�erential checkpoint. Di�erential
checkpoint is thoroughly described in Deliverable D3.2.

4. shutdown: Closes a checkpoint context.
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3.1.2. Implementation Details

We provide our own implementation of the model on top of the Mercurium C/C++
and Fortran source-to-source compiler [30] and the Transparent Checkpoint Li-
brary (TCL) [29] intermediate library.

We have designed an implementation based on three components:

1. The compiler (Mercurium) that translates directives and clauses into calls
to an intermediate library. The OpenCHK directives and clauses are trans-
lated to application-level checkpoint/restart functionalities. To decouple
the compilation procedure with the actual implementation of the check-
point library, Mercurium does not translates directly the pragma directives
to FTI calls, but it translates the directives to an intermediate library called
TCL.

2. An intermediate library (TCL) which is in charge of forwarding the user-
requested actions to the adequate back-end library; The user is agnostic
of the back-end library, but TCL must send the correct information in the
proper way to each back-end library. As each back-end library implements
a di�erent interface, TCL must format the information in the way each back-
end library expects it, as well as calling the appropriate methods to per-
form those actions required by the user.

3. Several back-end libraries. For the Legato project, we focus on the FTI back-
end checkpoint library.

Figure 3.3 shows our three-layer architecture. We would like to highlight that this
approach allows us extending the model to support new features if the back-end
libraries evolve.

Figure 3.2. Diagram of the three-layer architecture.

3.1.3. Evaluation of the Fault-Tolerance Interface

This section details the benchmark of our approach when compared with a di-
rect FTI invocation. Our evaluation focuses on two aspects: i) Programmability
of the pragma directives. This is done by comparing the lines of code (LOCs)
between the two approaches. ii) Overhead of our approach. The results are ob-
tained by averaging the execution times of 5 di�erent runs for each version. We
demonstrate that our compiler assisted approach adds no additional overhead
when compared to the direct use of the native back-end library.

The evaluation executions are conducted with 50 MPI processes, when possible.
Some applications present some constraints on the number of MPI processes
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that can be used. For those applications, we will specify the number of processes
used. We do not perform bigger experiments because nothing suggests that
more processes will introduce additional overhead than those introduced by
the back-end libraries. Depending on whether or not the original version of
the benchmark/application has intra-node parallelism, the number of threads
per process varies. Those having intra-node parallelism were executed with 48
threads per process, while the others were executed with 1 thread per process.

With respect to the execution time, all the runs took about 10 minutes. The
checkpoint frequency is 1 checkpoint per minute, so that we perform 10 check-
points per run. This frequency is expressed in terms of iterations. Hence, we
carry out a checkpoint every 10% of the iterations. We have selected a high
checkpoint frequency to stress the checkpointing mechanisms and facilitate the
performance comparison between the di�erent approaches evaluated. Coarser
checkpoint frequencies should result in even lower overheads.

With regard to the faults, for the evaluation part, all the faults are deterministi-
cally injected when the application has already done 90% of the work. The faults
introduced are exceptions that cause the abortion of the process.

We provide a brief explanation of seven applications and benchmarks used in
this evaluation. The size of the applications range from ≈ 500 to ≈ 15000 lines
of code. Duct [36]: A CFD application performing a Large Eddy Simulation (LES)
of turbulent flow in square. This application is pure MPI. Heat: Performs a heat
2D transfer simulation. It is pure MPI. LULESH2.0 [58]: C++ OpenMP+MPI sample
application from Lawrence Livermore National Laboratory that models the prop-
agation of a Sedov blast wave. The problem is formulated using a 3-dimensional
unstructured mesh. N-Body: The classic N-body simulation of a dynamical sys-
tem of particles. This benchmark uses MPI+OpenMP. Due to restrictions of the
implementation, it must be run only with 32 nodes. SPECFEM3D: A simulation of
a seismic wave propagation using a Galerkin spectral element method. Imple-
mented with MPI+OpenMP. Due to restrictions of the implementation, it must be
run only with 32 nodes. TurboRVB [37]: Developed at SISSA, this application is
used to understand high-temperature superconductivity by means of Quantum
MonteCarlo simulations. xPic: C++ OpenMP+MPI HPC application deduced from
iPic3D [71]. It is designed for large scale production runs. xPic simulates space
plasma in a 3-dimensional parallel code.

In Table 3.1 we present the results of our evaluation, in terms of both LOCs and
overhead in comparison with a direct FTI implementation of the di�erent appli-
cations. Evidently, the pragma-based implementation does not show any signif-
icant execution time overhead in comparison with the original FTI implementa-
tion. But more importantly, the LOCs required to checkpoint restart the di�erent
applications is heavily reduced when using the pragma directives. Typically, the
implementation of a checkpoint/restart scheme for an application requires 71%
less lines of code when using the pragmas in comparison with directly calling
the FTI API functions.
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FTI LOCs OpenCHK LOCs OpenCHK/FTI Exec. Time Overhead

DUCT 31 5 0.1613 0.9977
HEAT 15 5 0.3333 0.9924
LULESH 12 5 0.4167 1.0082
NBODY 25 5 0.2 0.9987
SPECFEM3D 28 6 0.2143 0.9968
TURBORVB 80 6 0.075 1.0163
XPIC 8 5 0.625 0.9937

AVERAGE 0.2894 1.0005

Table 3.1. LOCs and overhead required to perform application-level checkpoint/restart
using FTI and OpenCHK. Performance does not change much but the LOCs are reduced
significantly.

3.2. Integrated Development Environment
We have developed an Integrated Development Environment for OmpSs, based
on Eclipse (https://www.eclipse.org/). The approach includes two main com-
ponents: an Eclipse plug-in for OmpSs and OpenMP directives auto-completion
and user assistance; and a Docker container for Eclipse Che, providing the OmpSs
tool chain for easy installation and distribution.

3.2.1. Docker container for OmpSs tool chain

A ready-to-use Docker image with all the configured tool chain has been pre-
pared to allow the Eclipse Che stack creation. This image can be used stan-
dalone, allowing a quick hands-on evaluation of the tools, rather than installing
them. The generated image contains the following third-party so�ware:

1. Ubuntu;

2. papi;

3. boost;

4. arm32/64 gcc crosscompiler.

The image also includes the following BSC Tools:

1. autoVivado;

2. extrae;

3. paraver;

4. mcxx;

5. nanox;
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6. OmpSs@fpga kernel module;

7. xdma;

8. xtasks.

3.2.2. Eclipse Che

The web-native IDEs are quickly gaining importance and may change the way we
work, providing some benefits over traditional IDEs. A web IDE can be serviced
from a remote server or locally, and can be accessed with any available modern
web browser. As it is serviced using a website, one can seamlessly change the
device used as server. The code doesn’t have to leave the IDE workspace, making
backups to all projects easy. The compilation and execution, if serviced by a
server, is done remotely.

Eclipse Che o�ers iself a number of new useful features. In one unified envi-
ronment, programmers can use di�erent machine configurations for di�erent
projects. One can use preconfigured stacks for hassle-free setups and personal
containers with root access. Workspaces can work in single- or multi-user mode,
and it is easy to create collaborative workspaces and share configurations with
co-workers. While these features are desirable, an important part of an IDE is
all the customization and tools it gives the programmer to write code or ana-
lyze it. For this, Eclipse adapted the Theia IDE, a complete IDE based on Monaco
Editor (the one that powers Visual Studio Code) to run as the default editor on
Eclipse Che. With this, Eclipse Che has a mature, widely-used full-featured IDE
with compatibility to hundreds of extensions thanks to being able to use VSCode
plugins.

Alongside the benefits above, web-native IDEs usually have some disadvantages,
like not being able to use tools the developers are used to, or having a signifi-
cantly less powerful IDE compared to traditional ones. Eclipe Che makes an im-
portant step forward bringing all features necessary to prove itself useful. Che
defines the concept of “stack” as a configuration that contains compilers, run-
times, tools and any configuration or application that may be useful for a devel-
opment goal. This concept fits well in the OmpSs programming model, making
possible the creation of a stack that has Mercurium and Nanos installed, along-
side all the support tools like extrae, and third party vendor tools like Vivado.

A�er importing the necessary configurations to Che, the next logical step is to
create a Workspace. In Che, a workspace is an Environment where the projects
we are going to develop will live in. All it takes to create a workspace is a stack
configuration, a name and some extra configurations, such as for instance how
much RAM we want it to allocate. During the Workspace creation, a new con-
tainer powered by Docker will be created, following the rules of the stack. Mean-
ing that while we work in that workspace, all the changes we make or any appli-
cation we run will be stored and executed from that container.

3.2.3. Single-User Eclipse Che deployment for OmpSs@fpga

To enable creating a user-friendly local installation of Eclipse Che with the Docker
image and stack configuration ready to use OmpSs tools, a python script to au-
tomate the process has been created. Ideally, the user should have the docker
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image imported into its docker daemon, but the script manages the creation of
the image in case it is not available.

Since the tool flow relies on VIVADO to generate the bitstream, the script checks
for all Vivado installations in the user-defined path. The plugin will execute
Eclipse Che using the single-user-mode configuration, exposing all the vivado
installations to the IDE. A�er the Che initialization, the script will create a stack
per Vivado Installation and per architecture, which will be dynamically loaded
using the Eclipse Che’s API.

Figure 3.3. Diagram of Eclipse Che Deployment.

3.2.4. Workspace creation for OmpSs@fpga

Once the stacks are loaded into the IDE, we can create workspaces that use these
stacks. As shown in Figure 3.4, all workspaces run on their own container, but all
share the same Vivado installation folder. Once the workspace is created, the
user can verify the installation by running the included Example project embed-
ded in the stack, or begin developing an application.

Figure 3.4. Workspaces with its projects on Eclipse Che.
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3.2.5. Eclipse Plug-in for OmpSs and OpenMP

The OmpSs and OpenMP Eclipse plug-ins improve programmers productivity by
providing hints on annotating C/C++ code, during the development process. For
each OmpSs and OpenMP directive and clause, the plug-in implements auto-
completion and a small explanations to guide the user.

3.2.5.1. Eclipse legacy

An auto-completion plugin for Eclipse IDE has been developed. It has support
for the majority of OpenMP and OmpSs clauses. It displays a little help message
to each clause and lets the programmer browse the available annotations for
the current context (see Figure 3.5).

Figure 3.5. Eclipse IDE auto-completion plugin.

3.2.5.2. Theia Plugin for Che and VSCode

An auto-completion plugin for Tehia for Che, that is compatible with VSCode, has
been developed, it has support for the majority of OpenMP and OmpSs Clauses,
and it adds a little help message to each clause and lets the programmer browse
the available annotations for the current context (see Figure 3.6).

Figure 3.6. Eclipse che + Theia IDE and VSCode auto-completion plugin..

4. Dataflow Engines Integration
This chapter presents the results of the work done in two tasks: Task 4.5 (High-
level Synthesis for FPGA and Task) and Task 4.6 (Task-based kernel identification
/ DFE mapping). The chapter is split into two parts, respectively covering the
work done in both tasks.

In the first part in this chapter, the reader will find the design, implementa-
tion and integration of DFiant, a hardware description language that leverages
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dataflow semantics to decouple functionality from implementation constraints.
As presented below, DFiant enables describing hardware by using the dataflow
firing rule as a logical construct, combining modern so�ware language features
with classic HDL traits. DFiant is embedded in Scala and abstracts away registers
and clocks, bringing together constructs and semantics from dataflow hardware
and modern programming languages.

We present in the second part of the chapter our work on task-based kernel
identification and mapping on Maxeler dataflow engine graphs. To that goal, we
use the OmpSs programming model as a front end to the generation of Maxeler
dataflow graphs. At the end of the chapter, we present how to identify static
sub-graphs in OmpSs task graphs and then map them onto dataflow kernels in
the MaxJ language.

4.1. High-level Synthesis for FPGA

The register-transfer level (RTL) programming model paved the road for Verilog
and VHDL to flourish as the leading hardware description languages (HDLs). That
road, however, is steadily nearing its end as both hardware designs and devices
become increasingly more complex. While the so�ware world is striving for a
“write once, run anywhere” programmability, the complexity of an RTL design
implementing a given functionality may vary greatly across di�erent FPGA and
ASIC devices that incorporate various technologies and core components. More-
over, minor requirement changes may lead to significant redesigns, since RTL
abstraction tightly couples functionality with timing constraints. For example,
registers serve various roles such as preserving a state, pipelining and balanc-
ing a data path, deriving timed signals from an input clock, and synchronizing an
input signal. This coupling between functionality, timing constraints, and device
constraints leads to verbose and unportable RTL designs.

In this chapter we present our work on the DFiant dataflow-based HDL that ab-
stract away registers and clocks. DFiant is an open-source, Scala-embedded HDL
that utilizes these dataflow constructs to decouple functionality from imple-
mentation constraints. DFiant brings together constructs and semantics from
dataflow [27, 52, 60, 89], hardware, and so�ware programming languages to en-
able truly portable and composable hardware designs. The dataflow model of-
fers implicit concurrency between independent paths while freeing the designer
from explicit register placement that binds the design to fixed pipelined paths
and timing constraints.

4.1.1. The DFiant Language Overview

DFiant is a Scala library and thus possesses various rich type safe language
constructs. DFiant also incorporates unique language semantics that enable
dataflow-based hardware description. Throughout this section we elaborate on
these constructs and semantics via our running example, a four-by-four mov-
ing average (MA4) unit. The MA4 has four 16-bit integer input channels and is
required to output the average of all channels, while each channel is averaged
by a four-sample moving window continuously. The complete MA4 DFiant im-
plementation and its equivalent dataflow graph are available in Fig. 4.2 and 4.4,
respectively. Fig. 4.3 presents a subset of the DFiant-generated VHDL (2008) code
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Figure 4.1. HDL abstraction layer summary (lowest=netlist, highest=dataflow). Each layer
subsumes the capabilities of the layer below it. Dataflow constructs replace RTL registers
with their true functionality (e.g., state) or inserts them implicitly (e.g., pipelining).

1 import DFiant._
2

3 trait MovingAvg4x4 extends DFDesign {
4 val a = DFSInt[16] <> IN init 0
5 val b = DFSInt[16] <> IN init 0
6 val c = DFSInt[16] <> IN init 0
7 val d = DFSInt[16] <> IN init 0
8 val o = DFSInt[16] <> OUT
9

10 def ma(src : DFSInt[16]) = {
11 val acc = DFSInt[18] init 0
12 acc := acc - src.prev(4) + src
13 (acc / 4).toWidth(16)
14 }
15 def avg2(src1 : DFSInt[16], src2 : DFSInt[16]) =
16 ((src1 + src2).wc / 2).toWidth(16)
17 // (_ + _).wc is a with-carry addition
18

19 o := avg2(
20 avg2(ma(a), ma(b)), avg2(ma(c), ma(d))
21 )
22 }
23

24 object MA4App extends App {
25 val ma4 = new MovingAvg4x4 {}
26 ma4.compileToVHDL.toFile("ma4.vhd")
27 }

Figure 4.2. The MA4 DFiant code.

derived from lines 11-12 in Fig. 4.2.

4.1.1.1. Hello DFiant world!

The DFiant code in Fig. 4.2 demonstrates the structure of any DFiant program: it
imports the DFiant library (line 1), creates the top-level design by extending
the DFDesign trait (lines 3–21), creates a runnable application that instantiates
the top design trait, and compiles it into a VHDL file (lines 24–27).

The MA4 design is fairly straightforward. Lines 4-8 generate the signed dataflow
ports and include a 0 value initialization (see Section 4.1.3). Lines 10-14 define
the function ma that generates a single four-sample moving average, while lines
15-16 define the function avg2 that generates a two-input average unit. Finally,
lines 18-20 compose avg2 and ma to generate the entire MA4 functionality and
assign it to the output port o . We elaborate on the unique DFiant constructs
and semantics in the next sections.
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1 ...
2 signal acc : signed(17 downto 0);
3 signal acc_prev1 : signed(17 downto 0);
4 signal src_prev1 : signed(15 downto 0);
5 signal src_prev2 : signed(15 downto 0);
6 signal src_prev3 : signed(15 downto 0);
7 signal src_prev4 : signed(15 downto 0);
8 ...
9 sync_proc : process (CLK, RSTn)

10 begin
11 if RSTn = '0' then
12 acc_prev1 <= 18d"0";
13 src_prev1 <= 16d"0";
14 src_prev2 <= 16d"0";
15 src_prev3 <= 16d"0";
16 src_prev4 <= 16d"0";
17 elsif rising_edge(CLK) then
18 acc_prev1 <= acc;
19 src_prev1 <= src;
20 src_prev2 <= src_prev1;
21 src_prev3 <= src_prev2;
22 src_prev4 <= src_prev3;
23 end if;
24 end process sync_proc;
25 ...
26 async_proc : process (all)
27 variable v_acc : signed(17 downto 0);
28 begin
29 v_acc := acc_prev1;
30 v_acc := v_acc - src_prev4 + src;
31 acc <= v_acc;
32 end process async_proc;

Figure 4.3. The MA4 DFiant lines 11-12 compiled to VHDL. Note that the DFiant code is
extremely compact in comparison.

4.1.2. Dataflow Semantics

DFiant code is expressed in a sequential manner yet employs an asynchronous
dataflow programming model to enable an intuitive concurrent hardware de-
scription. For this purpose, DFiant applies the following rules:

• Concurrency and Execution Order Concurrency is implicit and the data schedul-
ing order, or token-flow, is set by the data dependency. DFiant schedules all
independent dataflow expressions concurrently, while dependent operations
are synthesized into a guarded FIFO-styled pipeline. The MA4 dataflow graph
in Fig. 4.4 demonstrates the concurrent paths constructed from the dataflow
dependency.

• Basic Operations Each application of an arithmetic/logic operator is trans-
lated into the appropriate hardware construction and applies a dataflow join
on their arguments. The arguments require a valid token for consumption to
produce a new token generated from the operations. For example, + in avg2
joins src1 and src2 and requires a token from both to produce the token
src1 + src2 .

• Path Divergence Diverging paths are implicitly forked, so token production
is possible if all target nodes are ready to consume the token. For example,
acc result in ma is forked into a division operation and the state feedback.
It is impossible to consume an invalid token and once a token is consumed it
is invalidated.
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Figure 4.4. The MA4 dataflow graph (the inputs are a , b , c , d and the output is o ).
The entire design is a composition of the ma and avg functions (detailed blowouts are
depicted as well). The compiler places pipeline tags to achieve the required performance
and the backend inserts registers accordingly. The concurrent construction is implied
from a sequential composition thanks to the dataflow abstraction.

• Constants Any Scala primitive value is considered as a constant when applied
as an argument to a dataflow operation. For example, the value 2 in avg2
is a primitive Int and is considered a constant in the division operation.
Semantically, a constant is an infinite token generator that produces a new
token with the same initial value each time the token is consumed.

• Pruning Unused nodes always consume tokens and are discarded during com-
pilation.

4.1.3. State Constructs and Semantics

In contrary to RTL languages, DFiant does not directly expose register and wire
constructs. Instead, DFiant assumes every dataflow variable is a stream and pro-
vides constructs to initialize the token history via the .init construct, reuse
tokens via the .prev construct, and update the state via the := construct.
Lines 11-12 in Fig. 4.2 along with their compiled VHDL representation in Fig. 4.3
demonstrate the state semantics as follows:

• Initialization The .init construct is accompanied by one or more token
values and only sets the initial state history. For example, line 11 constructs a
dataflow variable and initializes all of its history as zero value tokens.

• History Access The .prev construct reuses the previous state token. The
very first reused token is the one set via .init . It is also possible to call
.prev(step) with a step number argument to reuse older stream values.
For example, in line 12 we reuse a src token from four steps ago. If the src
token stream is “1, 2, 3, 4, ...” with a 0 initialization, then the src.prev(4)
token stream is “0, 0, 0, 0, 1, 2, 3, ...”.
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• Stall Bubbles Invoking .prev on an uninitialized dataflow variable gener-
ates a stall bubble. Stall bubbles are consumed and produced like any other
token, yet a basic operation with a stall bubble token must produce a stall bub-
ble token. Additionally, stall bubbles do not a�ect regular state. The backend
compiler is responsible to generate the additional logic required for existing
design stalls.

• State Update Scheduling The new updated token is pushed into a dataflow
stream by using the := assignment construct. There can be more then one
assignment to same variable, however only the last assignment updates the
state and occurs when all dependent dataflow firing rules are satisfied. This
rule is similar to signal update semantics in VHDL processes.

• Default Self-Generation Any dataflow a variable has an implicit self-assignment
a := a.prev that comes immediately a�er the variable construction. This
creates an equivalent reference between a and a.prev which leads to a
more intuitive programming. For example, in line 12 we used acc - ... and
not acc.prev - ... , since both expressions are equivalent.

Fig. 4.3 emphasizes the advantages of DFiant state constructs over RTL registers
and wires. One advantage is that the DFiant code resembles its RTL counterparts,
but is also very concise since state elements are automatically constructed when
a stream history is accessed. Another advantage is portability, because state
elements are not registers and therefore any type of state component is appli-
cable. Our first synchronous backend indeed maps state elements to registers,
but even an asynchronous backend can compile the same code and apply the
Muller C-element [78] as a state element.

4.1.4. Automatic Pipelining, Path-Balancing and Flow-Control

The dataflow abstraction enables designers to describe hardware without ex-
plicitly pipelining the design. The DFiant backend compiler automatically pipelines
the design and places registers to split long combinational paths. The compiler
has a propagation delay (PD) estimation database that can be tailored for any
target device and technology. With this information and a target clock constraint
the compiler tags the dataflow graph with the additional pipe stages required
before producing the RTL code. One possible tagging is depicted in Fig. 4.4, in
which two pipe stages were added between the large operations. Depending on
the availability of DSP blocks in the target device, it is also possible to break the
basic operations to multiple cycles by instantiating the proper vendor IP (e.g., a
long multiplication operation should require several cycles). All of these target-
specific adaptations are done without designer intervention and thus make any
DFiant design highly portable.

To maintain design correctness the compiler adds path-balancing registers when
pipeline registers are added and di�erent-latency paths converge. Since these
two features are separate, we can allow designers to explicitly place pipe stages
in critical junctions should our PD estimation fail. The .pipe construct adds
a pipe stage at a specific node and the compiler will balance the rest of the
converging paths. While both .pipe and .prev constructs appear similar,
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the .prev construct does a�ect the path-balancing mechanism. For example,
x - x.prev creates a derivation circuit while x - x.pipe manifests as a
constant zero since path-balancing applied at the subtraction input arguments
results in a x.pipe - x.pipe operation.

The ma function creates the regular state referenced via the acc variable. The
ma blowout in Fig. 4.4 exposes this problem by having a circular feedback that
updates the acc state. This feedback cannot be pipelined as-is because path-
balancing will never be able to satisfy the balancing rule due to circular path
dependency. It is only possible to increase the clock rate in feedback circuitry by
applying multi-cycle or speculative logic (e.g., a RISC-V processor core contains
several feedback junctions like the PC update and therefore has single-clock,
multi-cycle, and speculation-based pipelined implementations).

4.2. Task-based kernel identification and DFE mapping
MaxJ is Java-based meta-language that describes dataflow based on Maxeler
dataflow extensions. The language uses Java syntax but does not generate Java
byte code, instead it is used to describe static dataflow compute structures
that are mapped to an FPGA through MaxCompiler. MaxCompiler controls the
dataflow graph generation, shedules and optimises the graph, and maps it to an
FPGA netlist which is then passed on to vendor-specific FPGA backend tools that
handle placement, routing and bitstream generation. The fundamental princi-
ples of the MaxJ language and the compiler infrastructure were introduced in
Deliverable D2.1.

The design process of accelerating an application through o�loading the com-
pute intensive parts to Maxeler’s FPGA-based Dataflow Engines (DFEs) typically
starts with analysing an existing CPU application in C, C++ or Fortran. This appli-
cation is profiled for its computational hotspots. Next, the developer creates a
performance model for the dataflow implementation, taking into account com-
putation and communication, and optimised the projected performance based
on the high-level model. The goal is to achieve a high degree of pipelining and
parallelism within the dataflow model. Once the dataflow architecture is pro-
jected to be of good performance, it is then implemented in the MaxJ language.
Here, computation is described in MaxJ kernels and a manager, also developed
in MaxJ, facilitates the integration with the original host code. The MaxJ man-
ager describes the interface to DFE kernels and during the compile process it
automatically generates the API function calls for the host code. This API called
Simple Live CPU Interface, or SLiC in short, and the developer will add SliC calls
into the host code to o�load computations to the DFE. Overall, this development
process requires a fair amount of expertise and developer e�ort.

In the context of Task T4.6, we use the OmpSs programming model as a front
end to the generation of Maxeler dataflow graphs. The rational is that OmpSs
tasks seem naturally suitable for FPGA dataflow processing. OmpSs tasks have
clearly defined inputs and outputs, and have self-contained state which is an
important requirement for the dataflow model. Furthermore, it is necessary to
generate static dataflow graphs, since branching and context switching causes
significant overhead on FPGAs. We therefore focus on identifying static sub-
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graphs in OmpSs task graphs and mapping them to dataflow kernels in the MaxJ
language which then generate the FPGA configurations. This process is illus-
trated in Figure 4.5.

Figure 4.5. Mapping static sub-graphs from OmpSs to a dataflow implementation.

Current work focuses on the practical aspects of integrating OmpSs and MaxJ.
To explore various approaches for OmpSs and MaxJ integration, two practical
code examples are used: a tiled matrix multiply example and a convolutional
neural network (VGG16) that already exist in either OmpSs or MaxJ form. When
starting from OmpSs, an important consideration is to express and collect all the
information that is necessary for a MaxJ dataflow kernel in OmpSs. As mentioned
above, the integration of MaxJ kernels is facilitated via the SLiC API. This API
provides a so calles basic static interface to execute computations on the DFE
in one function call. This interface is a simple C function with parameters for
all incoming and outgoing streams, scalar parameters and the number of cycles
each compute kernel has to execute. An example is given below:

void movingAverage(int *x_in, int *y_out, int length);

The simple function movingAverage uses an input and output array as argu-
ments as well as a value to indicate the length of the arrays. This information
is necessary to control the number of execution cycles of the dataflow kernel
that performs the movingAverage computation. Since the OmpSs model cur-
rently does not directly expose the array length of task inputs and output, our
work focuses on adding this information to the OmpSs annotations, e.g. an ad-
ditional pragma for exection cycles which can then be propagated to MaxJ. Here
it is important to note that this information cannot be obtained dynamically as
it is needed for the compile-time interface generation. Further options that are
being explored involve SLiC interfaces without explicit execution cycles; how-
ever as this may limit the use in more complex scenarions, investigations of this
are currently ongoing.

5. Energy E�iciency
The components developed in Task 4.2 are described in this chapter. It includes a
description of LEGaTO programming and execution models, the integration of its
CPU and FPGA runtimes, an analysis of energy-e�iciency and security trade-o�s,
and the design of a task-based scheduler. Section 5.1 presents LEGaTO models

D4.2 Version 1 25 / 65

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 



and their transformations for running combined CPU and GPU applications by
appropriately sharing resources between Nanos and XiTAO (CPU and GPU run-
times, respectively). Section 5.2 presents a task-based scheduler that uses ma-
chine learning to predict performance and energy consumption of containerised
applications. Section 5.3 contains a detailed analysis of several trusted execu-
tion environments. In this chapter’s final section, we study performance and
energy implications of using Intel SGX, ARM TrustZone, and AMD SEV.

5.1. LEGaTO Energy-e�icient Programming Model
This section describes the status of the LEGaTO programming model and the ex-
ecution model. The main concern is the description of the applications in a high
level language, and the flow of transformations that need to be implemented in
order to go from the high level LEGaTO program written in the OmpSs language
down to the LEGaTO binary consisting of program code and kernels targeting
various execution substrates, including Nanos and XiTAO (for CPUs), FPGAs and
GPUs.

5.1.1. The LEGaTO Execution Model

The overall transformation flow of the LEGaTO tool chain is shown in Figure 5.1.
This figure shows the transformations from the high level LEGaTO application
written in the OmpSs language down to the execution binary.

FPGA kernel
(OmpSs code)

OmpSs + Annotations
for Locality, Security,

Fault Tolerance

LEGaTO APPLICATION

DFiant
HDL

LEGaTO
PROGRAMMING

MODEL

CUDA
kernels

MAXJ

Source Code

OmpSs
Master

FPGA
Bitstream

XiTAO RT

Nanos

CUDA

autoVivado

XiTAO

External Kernels

external
kernels

LEGaTO HW Platform

SMP code
(OmpSs code)

Figure 5.1. The LEGaTO tool chain and execution model

A LEGaTO application is written in C/C++ using the OmpSs programming model.
OmpSs applications execute in an implicit parallel region. Initially a single thread,
called the master thread, is started. The master thread can generate new threads
or tasks, and it can specify the execution of kernels on top of accelerators or CPU
threads. New tasks are generated using the oss task construct, as in the snip-
pet below.

#pragma oss task in ( . . . ) out ( . . . )
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The clauses in(..) and out(..) specify the input and output dependencies
(memory objects) that need to be available in order to mark a task as ready.
A task may also not contain any input nor output dependencies, in which case
it becomes ready as soon as it is instantiated by the parent thread (either the
master thread, or a task thread).

The programmer can also specify that a task is to be o�loaded to an accelerator.
This is done by specifying the target directive.

#pragma oss task ta rge t ( device )

This pragma indicates that the following task is to be executed on a device such
as a GPU or an FPGA. It is o�en the case that multiple implementations exist for
a particular task, targeting di�erent devices such as CPUs, FPGAs or GPUs. In this
case, the programmer can specify that di�erent codes represent di�erent imple-
mentations of the same function by using the implements clause. For example,
the following code indicates that function cuda_foo() is an implementation of
function foo() targeting the cuda device type.

#pragma oss task ta rge t ( cuda ) implements ( foo )
cuda_foo ( ) ;

The LEGaTO tool chain supports code generation directly from OmpSs source
code down to CPU cores (smp target) and FPGA by using the autoVivado tool
developed within the context of the LEGaTO project (see Deliverable D3.2). The
remaining targets such as CUDA and the XiTAO RT execute kernels that are pro-
vided externally. CUDA kernels rely on the Nvidia compilation infrastructure,
while XiTAO kernels are written using the XiTAO C++ interface and compiled us-
ing a C++ compiler such as GCC or LLVM. LEGaTO also provides two alternatives
to specify externally provided FPGA kernels. These are the DFiant HDL and the
MaxJ language which targets the Maxeler hardware platform.

The overall idea of the LEGaTO programming model is that OmpSs-level tasks are
identified by a master thread and then o�loaded onto the computational sub-
strate which is managed by a variety of runtimes that operate in a coordinated
manner. Within the context of LEGaTO we are developing five such runtimes:
Nanos and XiTAO (targeting CPUs), and OmpSs@FPGA, DFiant and MaxJ (target-
ing FPGAs). Support for GPUs (via CUDA and OpenCL) is already existing in the
OmpSs distribution which forms the basis of the LEGaTO tool chain.

5.1.2. Generation of Supertasks

LEGaTO supports a novel concept called supertasks. The idea behind super-
tasks is to decouple the parallelism of the computational directed acyclic graph
(DAG) from the provided resources. Each supertask is then provided with its own
scheduler which takes care of executing the individual tasks in the computa-
tional DAG. This concept is useful for the compilation of DAGs to FPGA hardware
(where resources need to be statically provided, and the FPGA needs to take
care of the execution of the kernel). It is also equivalent to the concept of Task
Assembly Object (TAO) which is currently being explored in the XiTAO runtime.

Figure 5.2 shows two approaches in which supertasks can be generated from a
computational DAG resulting from an OmpSs computation. The first approach,
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called explicit resource containers, simply assigns a static set of resources to a
parallel computation identified by the OmpSs code. This concept is currently
implemented in the XiTAO runtime. The second approach is to take an OmpSs
DAG and find a connected partition of nodes that tries to minimize the amount of
communication between di�erent partitions of the DAG. This approach is being
explored as a way to generate code for both FPGAs and XiTAO.

#pragma tao taskloop num_tasks(4)

Figure 5.2. Generation of supertasks in LEGaTO

5.1.3. Resource Sharing Between Nanos and the XiTAO RT

In general, each device is managed by a single runtime. However, in the case of
CPU devices, a challanging case arises when a user code calls multiple library
functions that are parallelized using di�erent runtime systems. Imagine that
the programmer wants to execute a matrix multiplication written in Nanos and,
concurrently, she wants to run an FFT written in XiTAO. In a traditional system,
she would have to execute first the matrix multiplication written in Nanos and
wait until the parallel resources have been reclaimed before executing the XiTAO
FFT. This is shown on the le� side of Figure 5.3. Evidently, this approach leads to
idleness and overall low utilization of the hardware.

Instead, in LEGaTO we implemented a scheme in which both Nanos and XiTAO
can operate in parallel by sharing resources. This is achieved by a two-step
approach in which the user first partitions the resources between Nanos and
XiTAO by using the xitao_set_mask() and nanos_set_mask() functions.
Once resources have been partitioned, the user can then concurrently o�load
kernels to the two runtims by using the xitao_async_kernel_launch() and
nanos_async_kernel_launch() calls. This is shown on the right side of Fig-
ure5.3.

5.2. Heterogeneity and Energy-Aware Task-based Scheduling
Current cloud providers o�er many di�erent types of hardware choices support-
ing their virtualised services. Examples are machines following architectures as
Intel x86, ARM, or IBM Power, featuring GPUs, FPGAs, or specific architectural ex-
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Figure 5.3. Sharing CPU resources between Nanos and the XiTAO RT

tensions as SSE or SGX. This allows for customers to tailor their applications ac-
cording to specific hardware. We performed the study described below consider-
ing that containers are the instances used by customers to deploy applications,
as a de facto standard for micro-services, or to execute computing tasks. With
that consideration in mind, we argue that the underlying orchestrator should
be designed so as to take into account and exploit hardware diversity. In addi-
tion, besides the feature range provided by di�erent machines, there is an o�en
overlooked diversity in the energy requirements introduced by hardware het-
erogeneity, which is simply ignored by the default container orchestrator place-
ment strategies. In the sections below we introduce HEATS, a new task-oriented
and energy-aware orchestrator for containerized applications targeting hetero-
geneous clusters. HEATS allows customers to trade performance for energy re-
quirements. We will explain how HEATS learns the performance and energy fea-
tures of the physical hosts and then monitors the execution of tasks on the hosts
and opportunistically migrates them onto di�erent cluster nodes to match the
customer-required deployment trade-o�s.

5.2.1. Motivation for Energy and Heterogeneity Awareness

Cloud providers nowadays provide access to a wide range of heterogeneous re-
sources to their customers. Hence, the diversity of resources encourages appli-
cation developers and deployers to program for, and o�load even more work-
loads to, the cloud. There, specialized hardware (e.g., GPU, FPGA) can be rented
for limited time, reducing upfront costs and allowing for better scalability.

To illustrate this diversity, Table 5.1 shows an overview of the commercial o�er-
ing of heterogeneous resources at six major public cloud providers. For each, we
list the CPU architecture (x86, IBM Power, ARM), and the availability of GPU, FPGA
or ASIC units. We further indicate if such resources can be accessed using bare
metal (BM) or virtual machine (VM) instances. Additionally, we show whether the
operating frequency of the processor can be dynamically scaled up or down, a
feature that could be leveraged to reduce the generated energy costs of a node.
This quick survey reveals that it is possible to combine a very heterogeneous en-

D4.2 Version 1 29 / 65

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 



semble of machines, each o�ering specific hardware feature sets. This capability
represents the ideal case for applications that have di�erent resource demands,
as it is sometimes better to migrate the execution from a machine of one kind
to a di�erent one, in order to better match the expected trade-o� requested by
the customer. Resource diversity can also be exploited to deploy applications
and workloads of di�erent nature.
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Figure 5.4. Migrating a task to a di�erent host allows for energy savings but increased
run time.

Containers (e.g., Docker [75]) have recently become the de facto standard to de-
ploy applications on the cloud, executed by specialized container orchestrators,
such as Google’s Kubernetes [74]. Current policies of container orchestrators of-
ten ignore the diversity found in hardware, leading to subtle trade-o� between
energy and performance. To better understand this aspect and motivate our
work, we conducted a simple experimental study (Figure 5.4). We set up an on-
premise cluster composed of 4 di�erent types of nodes: three server-grade ma-
chines (two Intel and one AMD) and one ARM-based low-energy device (a Rasp-
berry Pi). Each machine has di�erent hardware characteristics (e.g., number and
type of CPU cores, memory and operating frequency) and energy requirements.

While these properties are known by the cluster owner at deployment time, the
energy requirements as well as the raw computing power of the machines for a
specific workload are not. Typically, customers are only able to evaluate those
at runtime, while executing their applications. Because of that, they can face
unexpected costs or missed deadlines upon completion of tasks.

In our scenario, we developed and deployed a simple task implementing the
popular k-means clustering algorithm. At first, the task is deployed on the AMD
node (Figure 5.4, top-most plot). Given our cluster settings, with the default
Kubernetes scheduler, we observe the deployment on the machine with more
cores and memory. When remaining in the same host, the task completes a�er
69 seconds, consuming 1,047 Joules.

Next, we consider customers wishing to compromise the running time for energy
costs. This requires a dynamic container rescheduling policy that can migrate a
task into the ARM node a�er it has made some progress but before completion
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Table 5.1. Heterogenous resources available at public cloud providers. Some types avail-
able only via bare metal (BM) or virtual machines (VM). * = frequency scaling enabled.
3= feature available from VM or BM. 7= not available.

x86-64 POWER ARM GPU FPGA ASIC
Provider

BM VM BM VM BM VM BM VM BM VM BM VM
Amazon [17] 3* 3 7 7 7 7 7 3 7 3 7 7

Microso� [76] 7 7 7 7 7 7 7 3 7 3 7 7

Google [49] 7 3 7 7 7 7 7 3 7 7 7 3

IBM [55] 3* 7 3* 7 7 7 3 7 7 7 7 7

Oracle [83] 3* 3* 7 7 7 7 3 3 7 7 7 7

Scaleway [87] 3* 7 7 7 3* 7 7 7 7 7 7 7

(e.g., 30 seconds a�er startup, as highlighted by the vertical line in each plot).
In doing so, the net energy savings are important (up to 34%) but at the cost of
a 5.4× increase of the task’s running time.

Such trade-o�s are o�en desirable (especially for deadline-free, low-priority
workloads), but di�icult to achieve in practice. A task (or container) orches-
trator would need to be aware of several factors and able to: (1) know or learn
the characteristics of the underlying cluster and its hardware resources; (2) un-
derstand the trade-o� that a customer is willing to accept; (3) observe if a better
placement opportunity exists for the currently executing tasks; and (4) migrate
the task accordingly. In the text that follows we introduce HEATS, a scheduling
system geared toward heterogeneous clusters that achieves these goals.

The key mechanism used by HEATS consists in o�ering to clients the ability to
indicate, at deployment time, their intended energy-performance ratio (the ac-
ceptable trade-o� ), in the form of an H value. Therea�er, HEATS continuously
matches the demanded H value to the available resources, considering the re-
sources themselves, pre-built performance and energy models, and the possibly
conflicting requirements from other concurrent tasks.

5.2.2. HEATS Scheduling Policy

In this section we describe the scheduling algorithm implemented by HEATS.
Algorithm 1 describes the main functions, which we detail next.

The resource requirements of a task, as for instance memory or number of cores,
are specified before submission. Resource availability in the hardware nodes is
monitored (in our practical experiment we used Heapster [8]) and reported to
HEATS monitoring module. Then, HEATS computes suitable nodes for execution
considering the resource requirements for all previously running tasks as well as
the availability reported by the underlying system. Next, the algorithm executes
a profiling phase and estimates the performance and energy requirements of
the given task in each of the previously computed available nodes. Finally, the
scheduling module relies on these estimations to compute scores for each node,
to be weighted by the energy/performance ratio defined by the client (ew and
pw in Algorithm 1). The best fitting node is chosen to deploy the given task.

D4.2 Version 1 31 / 65

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 



Algorithm 1 Task scheduling in HEATS.
1: function Schedule
2: while pendingTasks 6= ∅ do
3: t = pendingTasks .poll()
4: bestFit ← BestFit(t , ew , pw)
5: Assign(t , bestFit)
6: function Reschedule
7: for t ∈ runningTasks do
8: bestFit ← BestFit(t , ew , pw)
9: if bestFit 6= currentHost then

10: Migrate(t , currentHost , bestFit)
11: function BestFit(t , ew , pw )
12: r ← RequiredResources(t)
13: n ← AvailableNodes(r)
14: scores ← Scores(n, r , ew , pw)
15: return n | {n, s} ∈ scores ∧ s = maxs
16: function Scores(nodes , r , ew , pw )
17: scores ← ∅
18: ne , np ← Predict(nodes , r)
19: for n ∈ nodes do
20: ns ← ew(1 − ne/maxe) + pw(np/maxp)
21: scores .add({n, ns})
22: return scores

In summary, the HEATS strategy will attempt to place tasks on the most e�i-
cient host that still has enough resources to run the given task. We define most
e�cient as the closest match to the demanded energy/performance trade-o�.
However, the ideal node for a task will not always be available at scheduling
time. Therefore, we recompute our scheduling decision every now and then.
When a better fit than the current host of a task is found, the scheduler per-
forms a migration.

The scheduling phase is triggered for the queue of all pending tasks. The algo-
rithm starts by finding the best fit for the next task (lines 4 and 11–15). It identifies
its resource requirements, e.g., CPU and memory, as well as the available nodes
for these resources (lines 12–13). Then, it computes the score for each of the
nodes (lines 16–22). The model is used for the profiling of nodes (line 18). The
scores are computed by normalizing the predictions and adding the demanded
weights (line 20). Every x seconds the rescheduling phase is triggered for the
set of all running tasks. If the re-execution of the best fit decides on a di�erent
target node, the task is migrated to the new host and removed from the current
one (lines 9–10). We show in our evaluation that x, for our specific workload and
cluster settings, has minimal impacts on the runtime or the energy e�iciency of
HEATS.

5.2.3. Architecture for Scheduling Heterogeneity and Energy

The architecture of HEATS is composed of several interacting components. Fig-
ure 5.5 depicts these interactions. We describe each of them in details in the
remainder of this section.
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Scheduling
Decides on task placements

 based on node availability and 
user requirements

Orchestrates

Monitoring
Resources (Heapster)

Energy (PDU, PowerSpy)

Modeling
Software probing (workloads)
Learning phase (TensorFlow)

HEATS 

Placement/migration
Instantiates and moves tasks 

among nodes

Figure 5.5. HEATS’ abstract components and interaction.

Modeling. The modeling component executes two main operations, namely prob-
ing and learning, descibed below.

The probing phase discovers the properties and capabilities of the cluster, i.e.,
the machines composing it. This probing phase is executed upon the initial setup
of HEATS, as well as for every major hardware reconfiguration (such as the inte-
gration of new machine types in the cluster pool). We implemented this probing
so that it also takes care of exploring the performance of the nodes by scaling
up and down the frequency of the CPUs [61]. We report that, in a typical setup,
to produce an accurate model of a new machine usually requires a few hours.
Figure 5.6 shows the results of possible characterizations that this phase can
produce, when applied to the machines of our cluster. In particular, it outputs
the runtime and energy requirements of two di�erent families of probing tasks.
The energy requirements reported here do not consider the idle state of the
machines but of the task itself only. In this way we can better understand the
tasks energy requirements for the di�ernt types of hardware given. We show the
results with two of such CPU-bound tasks: the aforementioned k-means clus-
tering algorithm, as well as a typical matrix multiplication operation. For both
types of probing tasks, we observe that the energy requirements can be reduced
on a given performance cost for almost every machine type. The framework fur-
ther executes these probing tasks by frequency scaling of the underlying CPUs.
We achieve this by leveraging two di�erent Linux CPU governors [13], powersave
and performance, respectively running the CPU at the minimum and maximum
frequency. We can observe that, within the same machine type, the energy and
performance are largely a�ected by scaling the CPU frequency. The output of
this phase is used next.
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Figure 5.6. Runtime and energy spent by tasks executing k-means and a matrix multi-
plication with two di�erent CPU governors: powersave (ps) and performance (perf).
The data collected by the probing phase is used to train a multiple linear re-
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gression model [79]. Given a task and its CPU and memory requirements, a fitted
regression model is used to predict its energy and performance for each machine
type available in the cluster. We did a preliminary analysis of di�erent machine
learning techniques and, for the workload used, TensorFlow [14] presented bet-
ter results. While the probing component constantly records new data, HEATS
uses it to refine the predictions at a given frequency. In our evaluation, we exe-
cute the learning phase every 24 hours.

Monitoring. Kubernetes is equipped with several tools to monitor resources:
cAdvisor [7] has been partially integrated into Kubernetes’ node agent kubelet [12],
and it is capable of measuring resources used by containers. Heapster [10] ex-
ploits the measurements from cAdvisor, aggregates them and provides means
to analyze and monitor the state of the Kubernetes cluster using Grafana [9].
Furthermore, Heapster allows us to store the aggregated data in InfluxDB [11],
a time-series database that supports SQL-like queries to retrieve historical re-
source measurements of the Kubernetes cluster.

In order to decide whether a task has to be migrated from one node to a di�er-
ent heterogeneous node, the HEATS scheduler has to be able to rely on a fine
grained resource monitoring system. Despite the potential capability to gather
resource measurements every 5 s, we found out that Heapster cannot reliably
deliver these resource measurements at a fixed rate. A custom resource mea-
surement system was therefore implemented and installed on the Kubernetes
nodes, which queries every second the local Docker instances for up-to-date
resources used by the containers. These resource measurements can then be
aggregated and used by the HEATS scheduler to provide the needed support for
migrating tasks.

The monitoring component is responsible for actively gathering information re-
garding the resources currently being consumed at each node by the tasks in
execution. This information is required by the scheduling component (described
below) to know which node has su�icient resources for the pending tasks. HEATS
leverages some default so�ware probes fromHeapster to continuously fetch the
hardware resources available on any given node.

Additionally, to access in real-time the current power and energy levels of a
node, we assume the availability of hardware monitors that are remotely acces-
sible. In order to assess power consumption in heterogeneous environments, we
experimented with two di�erent types of energy monitors, one for server-grade
machines and one for low-energy profiles.

Scheduling. Finally, the scheduling component is in charge of orchestrating the
inputs received by the modeling and monitoring components. To that end, it
first ensures that a prediction for the resources used by the task on the di�erent
set of machines is completed. Then, it combines this prediction with the energy
and performance trade-o�s, as defined by the end-user, to decide on the best
fitting node. Periodically, the scheduling component reconsiders its past deci-
sions: when a better fitting node is found, a migration decision is taken and the
corresponding task is moved to the target node.
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5.3. Trusted Execution Environments
Nowadays, public cloud systems are the de facto platform of choice to deploy
online services. All major information technology (IT) players provide some
form of infrastructure as a service (IaaS) commercial o�erings, including Mi-
croso� [86], Google [41] and Amazon [15]. IaaS infrastructures allow customers to
reserve and use (virtual) resources to deploy their own services and data. These
resources are eventually allocated in the form of virtual machines (VMs) [16],
containers [70] or bare-metal [31] instances over the cloud provider’s hardware
infrastructure, in order to execute the applications or services of the customers.
Privacy concerns have greatly limited the deployment of such systems over pub-
lic clouds [84]. Moreover, despite the existence of pure so�ware-based solutions
leveraging homomorphic encryption [80], their performance is several orders of
magnitude behind the requirements of modern workloads.
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Figure 5.7. Performance of simple arith-
metic operations using state-of-the-art ho-
momorphic encryption with HElib [53]. Num-
bers indicate execution time in milliseconds
for a batch of operations.

The recent introduction of new hardware technologies to enable trusted execu-
tion environments (TEEs) inside x86 processors by Intel and AMD paves the way
to overcome the limitations of the aforementioned so�ware-only solutions. In-
tel introduced software guard extensions (SGX) [39] with its Skylake generation
of processors in August 2015. These instructions allow applications to create
TEEs to protect code and data against several types of attacks, including a mali-
cious underlying operating system (OS), so�ware bugs or threats from co-hosted
applications. The security boundary of the application becomes the CPU die it-
self. The code is executed at near-native execution speeds inside enclaves of
limited memory capacity.

AMD recently introduced secure encrypted virtualization (SEV) [57,88] with its Zen
processor micro-architecture. Specifically, the EPYC family of server processors
introduced the feature on the market in mid-2017 [18, 62]. The SEV encrypted
state (SEV-ES) [56] technology, an extension to SEV, protects the execution and
register state of an entire VM from a compromised hypervisor, host OS or co-
hosted VMs. Unmodified applications are protected against attackers with full
control over the hosting machine, which in turn can only access encrypted mem-
ory pages.

On the edge-side, devices are typically designed for collecting and disseminat-
ing data to cloud infrastructure. The devices have a small form factor on which
they arrange a specific set of low power hardware needed to control or monitor a
physical system. A majority of these embedded and mobile devices is equipped
with ARM processors. Since more than 15 years [54], most ARM application level
processors feature a set of security extensions known as ARM TrustZone. ARM
has been continuously improving TrustZone specifications with new processor
revisions. For instance, ARM recently [24] updated its ARMv8.4 architecture of
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application processors enabling virtualization in the secure world. The intro-
duction of virtualization in the secure world better improves the isolation of
components and resources, and it is expected to boost the trusted applications
(TA) ecosystem in developing and using common standards and APIs.

Despite the availability of security-oriented instruction sets in consumer-grade
processors, high-level frameworks that can help developers use such extensions
are still at an early stage. Moreover, little has been said regarding the perfor-
mance and usability of these frameworks. It is only very recently that the first
open-source tools aiming to exploit these capabilities have emerged. Notable
examples for ARM TrustZone include Linaro ARM Trusted Firmware [63], ARM GNU
Toolchain [19], Android’s Trusty [50], Trustonic’s Kinibi [90], NVIDIA’s TLK [81], and
finally Linaro’s OP-TEE [66].

A major challenge for developers of trusted applications resides in the complex-
ity of the secure platforms themselves. Despite the existence of standards and
APIs, trusted applications remain OS-specific because of the custom libraries
provided by the di�erent vendors. Theses libraries are specialized for the var-
ious processors and are required to access secure storage and processing ele-
ments. They rely on drivers shipped with the hardware by the silicon manufac-
turer. Furthermore, dispatching trusted OSs requires trusted OS-specific code
in the firmware, which adds up to the issue. This greatly hinders the portability
of trusted applications across di�erent trusted OSs and, as consequence, forces
TA developers toward implementing and supporting several versions of trusted
OS-specific TAs.
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Figure 5.8. Block diagram of GlobalPlatform TEE System Architecture [47] (left) and block
diagram of ARM TrustZone according to ARMv8.4 [23] (right). Blocks with rich colors rep-
resent components which interact with the TEE, while blocks with pale colors represent
components which are not involved with the TEE or involved with a di�erent TEE.

5.3.1. Background of Trusted Execution Environments

5.3.1.1. GlobalPlatform Specifications

GlobalPlatform [48] is an industry association which publishes specifications for
secure digital services and devices. These specifications serve as basis to many
implementations [67,72]. In the scope of this background, we introduce some of
the terms defined by GlobalPlatform [47], also depicted in Figure 5.8 (le�).

An execution environment (EE) has to provide all necessary components to exe-
cute applications. This includes hardware and so�ware components, such as a
processing unit, physical memory in volatile and non-volatile form, peripherals,
buses connecting system resources, application programming interfaces (API),
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and instruction set architecture (ISA) [82]. A rich execution environment (REE) is
based on a device with all its components (excluding any secure components),
which are managed by at least one rich operating system (rich OS). A rich OS is an
operating system (OS) that is generally designed for performance and o�ers an
extensive amount of functionality. In contrast, a trusted execution environment
(TEE) is designed for security and o�ers only a reduced set of functionalities
to programmers. Generally speaking, a TEE complements a REE, while the two
are executed alongside each other. The TEE is managed by a trusted operating
system (trusted OS), typically with very small memory and storage footprint. Ac-
cording to [47], a TEE can host no more than one trusted OS, a limitation that
is relaxed by ARM’s latest design [23] for ARMv8.4. In addition, a trusted OS im-
plements the necessary system calls to provide trusted applications (TA) with
the TEE Internal API [45] and to facilitate communication with client applications
(CApp) in the REE over the TEE Client API.

The TEE Internal APIs provide a common basis to TAs for accessing system re-
sources or to issue requests from the trusted OS. Figure 5.8 (le�) highlights the
TEE Internal Core APIs and the TEE Socket API, which are the two primary libraries
used to implement our network performance tool. The CApps can request ser-
vices from TAs by making use of the TEE Client API. The TEE Client API forwards
these service requests to a REE communication agent (Comm Agent), typically
implemented as a driver in the rich OS. The REE communication agent then uses
some form of data exchange with the TEE communication agent residing in the
trusted OS. Finally, the TA receives the request and sends an answer over the
same path back to the CApp.

5.3.1.2. ARM TrustZone

ARM TrustZone is a hardware security architecture, which partitions all hardware
and so�ware resources of the system on a chip (SoC) into two worlds: a secure
world and a normal world. The partitioning of the SoC is materialized by intro-
ducing an additional bit used for read and write channels on the main system
bus and in cache tags [20]. This additional NS bit (i.e., non-secure) indicates
a secure transaction when set low, or a non-secure transaction when set high.
The bus master sets the NS bit upon each transaction issued on the main system
bus. The NS bit then has to be decoded by the bus or the slave to verify that se-
curity requirements are not violated. In order for a transaction to succeed, the
decoded address has to match the system resource being accessed. Thus, it is
not possible for a non-secure bus master to access a secure bus slave.

This TrustZone architecture design allows to span beyond the main system bus
to include IO peripherals (e.g., GPUs [93]) as well without adding a dedicated
processor. For backward compatibility reasons, the peripheral bus is connected
over a bridge to the main system bus. Consequently, the peripheral bus is not
carrying any NS bits and it is up to the bridge to secure the signals to the pe-
ripherals. The bridge must only forward valid transactions and prevent invalid
transactions from reaching the peripheral bus.

Every physical core of a TrustZone-enabled SoC consists of two virtual cores,
respectively a secure and a non-secure one. The two virtual cores are executed
in a time-shared manner. Hence, the currently executing virtual core determines
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what are the accessible system resources. For instance, the non-secure virtual
core can only access non-secure system resources. Vice versa, the secure virtual
core can access all system resources.

ARM-based SoCs are equipped with a memory management unit (MMU). This
provides one virtual MMU for each virtual core. The MMU maps the virtual ad-
dress space onto the physical address space. The translation lookaside bu�er
(TLB) within the MMU is used by privileged so�ware to store recent translations
of virtual to physical memory addresses. Privileged so�ware typically flushes
the set of address translation entries stored in the TLB and replaces it by a new
set of address translations when switching contexts. This can speed up the ad-
dress translation process and avoids privileged so�ware to walk through address
translation tables. By considering the NS bit in cache tags, the entire address
space is e�ectively divided into a secure and a non-secure address space. Fur-
thermore, it allows secure and non-secure address translation entries to co-exist
in the TLBs. Similarly, secure and non-secure lines can co-exist in caches. Inde-
pendent of the value of the NS bit, secure lines can evict non-secure lines and
non-secure lines can evict secure lines.

TrustZone is found in ARM application processors since 2003 [23]. Since then,
the implementation of TrustZone is organized into four exception levels (EL) with
increasing privileges [22], also shown in Figure 5.8 (right). EL0 is the lowest ex-
ception level and used to execute unprivileged so�ware. EL1 is used to execute
operating systems, and EL2 provides support for virtualization and is used to
execute hypervisors. Finally, EL3 controls the secure state. Exception levels can
be changed by executing instructions that either take an exception (increase the
exception level) or return from an exception (decrease the exception level).

Context switches between the two worlds are supervised by a firmware [21], i.e.,
the secure monitor. The secure monitor is executed at the highest exception
level EL3 and can be invoked in two ways: by executing a secure monitor call
(SMC) instruction, or by a subset of hardware exception mechanisms [20]. When
invoked, the secure monitor saves the state of the currently executed world be-
fore restoring the state of the world being switched to. A�er having dealt with
the states, the secure monitor returns from exception to the restored world.

Open Portable Trusted Execution Environment. The Open Portable Trusted Exe-
cution Environment (OP-TEE) is an open-source framework and implementation
of several GlobalPlatform’s specifications [43, 44, 46, 47]. It is actively developed
and maintained by the Linaro Security Working Group [65] (SWG). OP-TEE pro-
vides support for TrustZone-enabled SoCs. The OP-TEE OS forms the primary
component of the project and the TEE it manages. Any Linux-based distribu-
tion can be used as rich OS to run alongside OP-TEE OS. Two types of TAs are
supported by OP-TEE: (1) regular TAs [47], and (2) pseudo TAs which are statically
linked against the OP-TEE OS kernel. Regular TAs are being executed at EL0,
while pseudo TAs run at EL1 as secure privileged-level services inside the kernel
of OP-TEE OS. OP-TEE provides a set of client libraries to interact with TAs and
to access secure system resources from within the TEE.
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5.3.1.3. Intel SGX

Intel SGX provides a TEE in modern processors that are part of the Skylake and
more recent generations. It is similar in spirit to ARM TrustZone [6]. Applications
create secure enclaves to protect the integrity and confidentiality of the code
being executed and its associated data.

The SGX mechanism, as depicted in Figure 5.9 (middle), allows applications to ac-
cess confidential data from inside the enclave. An attacker with physical access
to a machine cannot tamper with the application data without being noticed.
The CPU package represents the security boundary. Moreover, data belonging to
an enclave is automatically encrypted and authenticated when stored in main
memory. A memory dump on a victim’s machine will produce encrypted data. A
remote attestation protocol (not shown in the figure) is provided to verify that an
enclave runs on a genuine Intel processor with SGX enabled. An application us-
ing enclaves must ship a signed, yet unencrypted shared library (a shared object
file in Linux) that can be inspected, possibly by malicious attackers.

The enclave page cache (EPC) is a 128MiB area of memory predefined at boot
to store enclave code and data. Any access to an enclave page outside the EPC
triggers a page fault. The SGX driver interacts with the CPU and decides which
pages to evict. Tra�ic between the CPU and the system memory is kept confi-
dential by the memory encryption engine (MEE) [51], also in charge of tamper
resistance and replay protection. If a cache miss hits a protected region, the
MEE encrypts or decrypts data before sending to, respectively fetching from, the
system memory and performs integrity checks. Although future releases of SGX
intend to relax the EPC limitation [59, 73], we cannot yet guess the performance
of the new mechanism, and it sounds reasonable to expect some loss due to
encryption and decryption. Finally, data can also be persisted on stable storage,
protected by a seal key. This allows storing certificates and waives the need of
a new remote attestation every time an enclave application restarts.

5.3.1.4. AMD SEV

AMD SEV provides transparent encryption of the memory used by virtual ma-
chines. To exploit this technology, the AMD secure memory encryption (SME)
extension must be available and supported by the underlying hardware. The ar-
chitecture relies on an embedded hardware advanced encryption standard (AES)
engine, itself located on the core’s memory controller. SME creates one single
key, used to encrypt the entire memory. As explained next, this is not the case for
SEV, where multiple keys are being generated. The overhead of the AES engine
is minimal.

SEV delegates the creation of ephemeral encryption keys to the AMD secure pro-
cessor (SP), an ARM TrustZone-enabled system on a chip (SoC) embedded on-
die [57]. These keys are used to encrypt the memory pages belonging to distinct
virtual machines, by creating one key per VM. Similarly, there is one di�erent key
per hypervisor. These keys are never exposed to so�ware executed by the CPU
itself.

It is possible to attest encrypted states by using an internal challenge mech-
anism, so that a program can receive proof that a page is being correctly en-
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Figure 5.9. ARM TrustZone, Intel SGX and AMD SEV operating principles

5.3.1.5. Comparison of TEEs

Memory limits ARM TrustZone. The main memory of an ARM TrustZone-enabled
SoC can be partitioned at boot time into a non-secure and a secure memory
area. When the SoC boots, it is in secure mode from where it has access to
the entire memory. In a first boot stage the firmware is instructed to reserve a
defined memory area for the secure world. It is then the task of the trusted OS
to manage the secure memory. The trusted OS can impose further restrictions
on the shared memory used to exchange data between the worlds or the size
of TAs. Typically, only a few megabytes are allocated for the secure memory, to
keep the trusted computing base (TCB) as small as possible.

Intel SGX. The EPC area used by SGX is limited to 128MiB, of which 93.5MiB are
usable in practice by applications; the remaining area is used to maintain SGX
metadata. The size of the EPC can be controlled (i.e., reduced) by changing set-
tings in the unified extensible firmware interface (UEFI) setup utility from the
basic input/output system (BIOS) of the machine.

AMD SEV. This limit does not exist for SEV: applications running inside an en-
crypted VM can use all its allocated memory.

Usability ARM TrustZone. The communication between an application in the nor-
mal world and a TA evolves around functions handling the context, session, com-
mand, and shared memory as shown in Figure 5.9 (le�). This facilitates interop-
erability between di�erent GlobalPlatform API compatible TEE implementations
and allows REE applications to set up multiple contexts. A context is initialized
by referencing the device file Figure 5.9-À connecting to the TEE driver Figure 5.9-
Á. TAs are identified by a universally unique identifier (UUID), which is referred
to when setting up a session to a TA Figure 5.9-Â. To set up a session, OP-TEE
will load the TA from the normal world to the secure world with the help of
tee-supplicant Figure 5.9-Ã. The tee-supplicant is a daemon running in
the normal world used by OP-TEE to request services from the REE. These steps
are skipped when a session to a pseudo TA is established. A TA can initialize and
set up its environment upon TA creation and session establishment (Figure 5.9-
Ä & Figure 5.9-Å). From this point on, the REE application can request services
from the TA by invoking commands. These commands can pass up to four param-
eters, which are either values or references to shared memory regions. Values
are pairs of unsigned 32 bit integers. Shared memory regions are allocated, reg-
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istered and released through GlobalPlatform API calls in libteec. Without the
availability of libteec, developers would have to communicate directly with
the kernel driver through ioctl system calls.

In OP-TEE, TAs can use services accessible through GlobalPlatform Internal Core
API Figure 5.9-Å implemented in libutee. TAs are statically linked against
libutee, which wrapps the API functions around assembler macros to OP-TEE
OS system calls. The library provides interfaces to secure storage Figure 5.9-Ç,
time, arithmetic and cryptographic operations Figure 5.9-Æ. The secure storage
API encrypts data objects by the use of a secure storage service. The encryp-
tion process involves three keys: secure storage key (SSK), trusted application
storage key (TSK) and file encryption key (FEK). The SSK is generated from the
hardware unique key and is used to derive TSKs. Each TA has a TSK that is gen-
erated from the SSK and the TA’s UUID. Both SSK and TSK are generated using
HMAC SHA256 algorithm [68]. Finally, for every created file, a FEK is generated
from the pseudo random number generator. The encrypted data objects are
then transferred to the tee-supplicant by a series of remote procedure calls
(RPC) and stored in a special file. OP-TEE further provides TAs with libraries for
TLS and SSL protocols (libmbedtls [25]), arithmetic (libmpa) and a subset of
ISO C functions (libutils). These libraries are used in part by OP-TEE to imple-
ment GlobalPlatform’s Internal Core APIs, in particular the Arithmetical API and
the Cryptographic Operations API. Without these libraries, TA developers would
have to provide this code, and they would not be able to just simply link their
TA’s code against this set of initial libraries. Once the REE application has no
further service requests, the session is terminated and the context is destroyed.

Intel SGX. To use SGX enclaves, a program needs to be modified—requiring a
re-compilation or a relink—e.g., using the o�icial Intel SGX SDK [38]. It is the
responsibility of developers to decide which sections of the programs will run
inside and outside the enclave. Recently, semi-automatic tools [69] have been
introduced to facilitate this process.

The execution flow of a program using SGX enclaves is as follows. First, an en-
clave is created (see Figure 5.9-Ê, le�). As soon as a program needs to execute a
trusted function (Figure 5.9-Ë), it invokes the SGX ecall primitive (Figure 5.9-Ì).
The program goes through the SGX call gate to bring the execution flow inside
the enclave (Figure 5.9-Í). Once the trusted function is executed by one of the
enclave’s threads (Figure 5.9-Î), its result is encrypted and sent back (Figure 5.9-
Ï) before giving back the control to the main processing thread (Figure 5.9-Ð).

AMD SEV. As mentioned in the previous section, no changes need to be made to
programs when using SEV. From the programmer perspective, SEV is completely
transparent. Hence, the execution flow of a program using it is the same as a
regular program, as shown in Figure 5.9 (right). Notably, all the code runs inside a
trusted environment. First, a program needs to call a function (Figure 5.9-À). The
kernel schedules a thread to execute that function (Figure 5.9-Á) before actually
executing it (Figure 5.9-Â). The execution returns to the main execution thread
(Figure 5.9-Ã) until the next execution is scheduled (Figure 5.9-Ä).

Integrity protection ARM TrustZone. TrustZone does not provide hardware in-
tegrity protection mechanisms. However, so�ware leveraging TrustZone can pro-
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Device Intel AMD

Machine Supermicro 5019S-M2 Supermicro 1023US-TR4
CPU Intel Xeon E3-1275 v6 2× AMD EPYC 7281
CPU Frequency 3.8GHz 2.1GHz

Memory 16GiB DDR4 64GiB DDR4
Memory data rate 2400MT/s 2666MT/s

Table 5.2. Comparison of cloud platforms

vide services that introduce integrity protection, such as for example secure
storage or integrity measures during secure boot.

Intel SGX. Intel SGX has data-integrity protection mechanisms built-in. Memory
pages that are read from EPC memory by an enclave are decrypted by the CPU,
and then cached within the processor. In the opposite direction, data that is
being written to the EPC by an enclave is encrypted inside the CPU before leaving
its boundaries. The integrity of the data is safeguarded by associating metadata
that is themselves integrity protected. The metadata is stored in a Merkle tree
structure [42], the root of which is stored in SRAM, inside the processor. These
integrity mechanisms incur an overhead that has been previously evaluated and
shown to be acceptable for sequential read/write operations, but up to 10× for
random read/write operations [26].

AMD SEV. Conversely, to the best of our knowledge, the current version of AMD
SEV (or SME) does not provide any integrity protection mechanism [77]. We ex-
pect this limitation to be addressed in future revisions.

5.3.2. Evaluation of Trusted Execution Environments

5.3.2.1. Setup for Cloud TEEs

Our evaluation uses two types of machines. The Intel platform consists of a
Supermicro 5019S-M2 machine equipped with an Intel Xeon E3-1275 v6 processor
and 16GiB of DDR4-2400 RAM. The AMD machine is a dual-socket Supermicro
1023US-TR4 machine, with two AMD EPYC 7281 processors and 8× 8GiB of DDR4-
2666 RAM. Both client and server machines are connected on a switched Gigabit
network.

The two machines run Ubuntu Linux 16.04.4 LTS. On the AMD platform, we use a
specific version of the Linux kernel based on v4.15-rc11 that includes the required
support for SME and SEV. Due to known side-channel attacks exploiting Intel’s
hyper-threading [35], this feature was disabled on the Intel machine, and so
was AMD’s simultaneous multithreading (SMT) on the AMD machine. We use the
latest version of Graphene-SGX [34],2 while we rely on the Intel SGX driver and
SDK [38], v1.9. In order to match the hardware specification of the Intel machine,
we deployed para-virtualized VMs on the AMD machine, limited to 4 VCPUs, 16GiB
of VRAM and have access to the host’s real-time hardware clock.

1https://bit.ly/2y6TVcI
2https://github.com/oscarlab/graphene/tree/2b487b09
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The power consumptions are reported by a network-connected LINDY iPower
Control 2x6M power distribution unit (PDU). The PDU can be queried up to every
second over an HTTP interface and returns up-to-date measurements for the
active power at a resolution of 1W and with a precision of 1.5%.

5.3.2.2. Memory-Bound Operations

We begin with a set of micro-benchmarks to show the performance overhead in
terms of memory’s access speed imposed by Intel SGX and AMD SEV. We rely on
the virtual memory stressors of Stress-NG as a baseline. On the Intel architec-
ture, we use Stress-SGX [92], a fork of Stress-NG for SGX enclaves. We ensure
that both SGX-protected and unprotected versions of the stressors execute the
exact same binary code, to provide results that can be directly compared against
one another.

In the case of the AMD machine, the benchmark is first run in a traditional vir-
tual machine, and subsequently the same benchmark is run again with AMD SEV
protection enabled. We replace the mmap memory allocation functions of the
virtual memory stressors with malloc functions to have a fair comparison be-
tween Stress-NG and Stress-SGX (where mmap is not allowed).

Figure 5.10 summarises the results of this micro-benchmark.

Values are taken from the average of 10 executions, where each method is spawn-
ing 4 stressors with an execution limit of 30 seconds. The figure can be read in
the following way: the percentage of the surface of each disk that is filled rep-
resents the relative execution speed in protected mode, compared to the native
speed on the same machine for the same configuration. For example, a disk
that is 75% full ( ) indicates that a stressor ran with protection mechanisms en-
abled at 0.75× the speed observed in native mode. A full disk ( ) indicates that
the performance of the associated stressor is not a�ected by the activation of
SGX/SEV.

On both platforms, performance is not a�ected when the program operates on
a small amount of memory (i.e., 4MiB). The reason is that the protection mecha-
nisms are only used to encrypt data leaving the CPU package. As 4MiB is smaller
than the amount of cache embedded on the CPU on both platforms (as detailed
in subsubsection 5.3.2.1), the data never leaves the die and is therefore processed
and stored in cleartext.

Both technologies perform better when memory accesses follow a sequential
pattern, as observed in the tests read64, gray, incdec, inc-nybble, walk-d1 and
rand-sum. Conversely, Intel SGX is negatively a�ected by random memory ac-
cesses, as seen for tests swap, modulo-x, prime-gray-1, walk-0a and walk-1a.
AMD SEV is also partially a�ected under these conditions (tests swap, modulo-
x, walk-0a and walk-1a). Memory accesses beyond the size of SGX’s protected
memory (i.e., EPC) are the slowest in our experiment, up to 0.05× less than native
memory accesses. Under these conditions methods such as modulo-x were not
able to produce any results. However, supplemental tests, during which hyper-
threading was enabled and all 8 CPUs used, did return results.

Finally, SEV appears to be much faster than SGX (an overall greener look for the
disks), due to its lack of checks to ensure data integrity protection (as explained
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in subsubsection 5.3.1.5). Similarly, larger memory accesses also do not su�er
from drastic performance penalties like in the case of Intel SGX.
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Figure 5.10. Micro-benchmark: relative speed of memory-bound operations using Intel
SGX or AMD SEV as protective mechanisms against native performance on each platform.
The bottom row shows the relative energy consumption for Intel SGX protective mecha-
nism against native performance. Methods are ordered from sequential (left) to random
(right) accesses by increasing memory operation size.

5.3.2.3. Energy Cost of Memory-Bound Operations

To evaluate the energy cost of memory-bound operations we recorded the power
consumption while running the micro-benchmark of Figure 5.10.

The results are shown in the bottom row of the table, row SGX E. The pie-chart is
read as follows: a disk that is 67% full ( ) indicates that the stress-sgx method
consumed 1.67× more energy during execution with SGX enabled compared to
native performance.

As expected, the energy consumption using SGX increases when the memory size
considered is bigger than the EPC memory, and a similar behaviour is observed
for each of the stressor method. However, the case of the move-inv stressor is
di�erent. In this case (Figure 5.11 (right)), SGX mode consumes more energy than
native, independently from the memory size. The move-inv stressors sequen-
tially fill memory with random data, in blocks of 64 bits. Then they check that
all values were set correctly. Finally, each 64 bit block is sequentially inverted,
before executing again a memory check.

Conversely, in the case of AMD SEV we did not observe higher energy consump-
tions compared to native energy consumption, hence these results do not ap-
pear in Figure 5.10. Specifically, 108 out of 110 memory stressors confirm that
the energy consumption lies within the 3.7% margin of error, i.e., the precision
of the measurement. Only two measurements (read64 with memory size 16MiB,
and modulo-x with memory size 256MiB) lie slightly outside the range of error
and do not confirm the observation.
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Figure 5.11. Energy measurements for micro-benchmark: overall results (left) and method
move-inv (right).

Device QEMU Raspberry

CPU Intel Xeon E3-1270 v6 Broadcom BCM2837
CPU Frequency 3.8GHz 1.2GHz

Memory 63GiB DDR4 944MiB LPDDR2
Memory data rate 2400MT/s 800MT/s

Samsung Transcend micro SDHC
Disk

MZ7KM480HMHQ0D3 UHI-I Premium
Disk Size 480GB 16GB

Disk Read Speed 528.33MB/s 90MB/s

Table 5.3. Comparison of edge platforms

5.3.2.4. Setup for Edge TEE

The OP-TEE framework has built-in support for QEMU [32] deployments, provid-
ing an easy to use and inexpensive way for developers to explore ARM TrustZone,
with little to no downsides compared to hardware deployments. For this reason,
we decided to deploy OP-TEE’s Sanity Testsuite v3.2.0 [64] on the following two
platforms: Dell PowerEdge R330 Server and Raspberry Pi 3B v1.2. The Dell Pow-
erEdge R330 is running Ubuntu 18.04.1 LTS with the 4.15.0-43-generic Linux kernel
and is used to emulate the Raspberry Pi 3B platform with QEMU v2.12.0. A com-
parison of the two platforms can be found in Table 5.3. OP-TEE provides a build
environment which, by default, deploys and emulates its OS on an ARM Virtual
Machine virt using a Cortex-A57 with no more than two cores. The deployment
was changed to match the specification of the Raspberry Pi 3B platform as close
as possible.

5.3.2.5. Secure Storage

The secure storage benchmark is part of the OP-TEE sanity test suite adhering
to the Trusted Storage API for Data and Keys described in [46]. Neither of the
platforms is equipped with an eMMC, for which reason the secure storage has to
be o�loaded to the REE file system. The benchmark executes three commands
WRITE, READ, and REWRITE, for data sizes in the range of 256B to 1MiB, that
are accessed in chunks of at most 1KiB. The REWRITE command first reads data
from an object, resets the cursor and writes the data back to the same object.
The data to be stored in the secure storage is allocated and filled with scrambled

D4.2 Version 1 45 / 65

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 



data within the TEE.
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Figure 5.12. Secure storage benchmark execution time and throughput

Figure 5.12 shows the overhead of accessing data in chunks of 1KiB in the secure
storage. In general, the overhead becomes more significant with increasing data
sizes, more precisely once the data size exceeds the chunk size. Maximum speed
is achieved when the data size equals the chunk size. Overall, the REWRITE
command has the highest overhead, because it basically executes the READ and
WRITE commands in one batch. It should also be noticed, that the WRITE and
REWRITE operations experience an overhead of about one order of magnitude
and more compared to the READ operation. The reason for this high overhead
is due to the delay in switching between worlds. In the ARM TrustZone usability
paragraph of subsubsection 5.3.1.5 are the keys described that, are involved with
the secure storage. For encrypting data blocks in the secure storage, the FEK has
to be first fetched from the secure storage’s meta data. Hence, the WRITE and
REWRITE operations have two additional world switches to perform. Thus, we
observe a 7× overhead on QEMU platform and a 100× overhead on Raspberry
Pi platform for the READ and WRITE operations depicted in Figure 5.12.

5.3.2.6. Assessment of Trusted Execution Environments

Privacy-preserving systems would dramatically benefit from the new wave of
trusted hardware techniques that are now available in most recent processors
sold by Intel and AMD. Their design could be greatly simplified, for instance,
by avoiding to rely on complex cryptographic primitives. Development of se-
cure services benefits from well established APIs and standards. OP-TEE imple-
ments several GlobalPlatforms specifications and APIs and provides common
interfaces for secure services.

We presented an energy, performance, and usability evaluation on the impact
of three hardware protection techniques: ARM TrustZone, Intel SGX, and AMD
SEV. Our results suggest that AMD SEV is a promising technology: many of our
memory-intensive benchmarks run at near native speed. Furthermore, our bench-
marks have shown that requesting services from TAs in TrustZone on ARMv8-A
using OP-TEE incurs a significant overhead compared to service execution in the
normal world.

D4.2 Version 1 46 / 65

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 



Limiting the space available to a TA is sensible, in order to minimize the TCB.
However, the default memory limit of 1MiB for TAs in OP-TEE becomes a major
inconvenience with respect to secure storage and shared memory. Generating
the SSK in OP-TEE requires the HUK. However, most platforms lack of documen-
tation to access or obtain the HUK. OP-TEE avoids this issue by considering a
static string value instead of the HUK. This alternative can potentially weaken
the cryptographic protection of the objects stored in the REE file system of the
secure storage. TEEs would greatly benefit from unrestricted access to HUKs and
could so improve the protection of secure storage. Additional energy costs can
be avoided as long as the system complies with the imposed restrictions of the
hardware-assisted protection mechanisms, in particular for Intel SGX.

6. Fault-Tolerance Mechanisms
This chapter gives technical details of the components produced or extended
in WP4 concerning fault-tolerance and security. The results presented here are
output from the work done in task 4.7. Section 6.1 presents a performance mon-
itoring framework, developed to understand the overhead generated by trusted
execution environments. This framework helps in producing meaningful perfor-
mance metrics and allows to identify the sections in the trusted environments
that produce the larger overheads. Section 6.2 presents and assesses our Fault-
Tolerant Interface, a library for checkpointing programs that follow a task model.
We recall that in Chapter 3 we already presented how this library was integrated
in the runtime system.

6.1. Performance Monitoring
To ensure the confidentiality and integrity of applications, we design and imple-
ment security mechanisms based on TEE technologies such as Intel SGX, AMD
SEV, or ARM TrustZone. However, the security guarantees come with perfor-
mance overhead [94] [26]. To understand the overhead, we need to collect a set
of metrics and extensive statistical data which are able to provide the neces-
sary insights into the inner workings of the system and applications. Therefore,
there is an increasing need for extensive research into monitoring, profiling, and
optimizing applications running inside TEEs.

Most of the state-of-the-art in this research field has focused on profiling and
measuring application performance during the development phase [94] [28] [2].
These tools provide significantly detailed data on the application behavior and
performance-critical events during runtime. This can, in turn, provide hints on
where major issues and bottlenecks reside in the application code and subse-
quently aid code improvements and performance optimizations.

Although there is already an extensive amount of visibility into applications, this
is currently limited to the development environment, leaving developers blind
when the time comes to run their application in production. This makes it harder
and more complicated when specific issues and bugs are encountered, as the
limited visibility does not allow for proper debugging. In conclusion, while pro-
filers are extremely valuable for gaining a better understanding of an applica-
tion, most of the time they require source code modifications and re-compilation

D4.2 Version 1 47 / 65

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 



which inherently bring a higher performance impact and is not acceptable in
production environments.

To overcome these issues, we provide a monitoring and observability framework
based on currently available open-source solutions. Our goal is to help users of
LEGaTo frameworks to address the following questions:

- What are the main contributors for enclave overheads for a given applica-
tion?

- What performance metrics help to explain the overheads of applications
running inside enclaves?

- Could these metrics give an indication of how to reduce the performance
overheads of the applications?

- How can these metrics be visualized to convey the overheads?

6.1.1. Monitoring Framework

We propose a low-overhead monitoring framework which not only provides some
of the performance profiling functionality but also allows users to continuously
keep track of their applications running with TEEs, e.g., inside SGX enclaves. To
our knowledge, no comparable solution exist so far. Our framework o�ers easy
integration into any system given that it is capable of running inside Docker con-
tainers. Moreover, it o�ers extensive visibility into the underlying system metrics
by using eBPF programs attached to kernel probes and tracepoints [1], while also
providing developers with SGX specific data thanks to our modified SGX instru-
mented driver. In addition, it allows for further configurability, by easily modify-
ing a configuration file written in YAML format, and o�ers developers the option
to extend the list of metrics provided by instrumenting their own application.
Finally, by integrating our monitoring system with Grafana [9], an open-source
platform for time-series analytics, we provide rich and meaningful visualization
options to get a better understanding on the available metrics data.

Figure 6.1 shows the high-level architecture of our monitoring framework. It con-
sists of a set of standalone components, each playing an explicit role: (i) Metrics
Aggregation Service (MAS), (ii) Metrics Visualization Service (MVS), (iii) TEE Met-
rics Exporter (TME), and (iv) System Metrics Exporter (SME). This design allows
other components to be added easily if needed, depending on the level of in-
sight required and the requirements of each application.

Metrics Aggregation Service. The main component in our architecture is the
Metrics Aggregation Service (MAS). The MAS is a standalone component con-
sisting of a time-series database, a metrics retrieval component and an HTTP
server. It is capable of collecting, processing and aggregating a large number of
metrics, from a dynamically changing list of services, with low overhead on the
applications.

It stores all metrics data samples locally and groups them into chunks for faster
retrieval. Additionally, it allows for multi-dimensional data with the help of met-
ric labels specified as a set of key-value pairs. To help developers aggregate the
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Figure 6.1. The architectural design of the Monitoring framework.

data, it provides support for data queries over specified time ranges and labeled
dimensions. It provides detailed quantitative analysis on the data, by selecting
and applying aggregation functions to query results. Typically, the MAS is capa-
ble of connecting to every kind of service that provides a metrics endpoint so
that developers are able to easily add their application metrics to it. Di�erently
from other monitoring systems, it uses a pull approach to collect the data from
its targets.

Apart from application metrics, two additional metric components were added
to the architecture: (i) TEE Metrics Exporter: pulls metrics and statistics from the
TEE platform the application is running on. (ii) System Metrics Exporter: pulls
metrics and statistics from the supporting infrastructure such as CPU, memory,
cache, etc.

Both services act as metrics providers and translators by scraping metrics from
their specific targets and providing them to the MAS in a standard format. There
can be di�erent implementations of these services depending on the specific
infrastructure, operating system, platform vendor, etc. We implemented MAS
using the open-source tool Prometheus [4]. In addition, we instrumented the
Linux SGX driver and implemented the SGX-Exporter as well as wrote several
eBPF programs to extract low level performance metrics and exposed them to
our metrics engine.

Metrics Visualization Service. Visualizations hold special importance in the mon-
itoring space as it is not an easy task to make sense of time-series metrics just
by looking at the raw data. Visualizations also make it easier to spot interesting
trends or underlying issues. Additionally, in cases of failures or incidents it helps
to limit the data view subset to an interesting time frame. This, in turn, allows
for better post-mortem and faster and more e�ective root cause analysis. But
choosing the right type of visual representation is not trivial, as it depends as
much on individual preferences as on the metrics one is trying to visualize.

Although the MAS o�ers data queries and aggregation functions, it does not pro-
vide any support for metrics visualization and analytics. Therefore, an external

D4.2 Version 1 49 / 65

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 

 

 
 
DX.Y Version 1.0 1 / 4  

 

 

 

DX.Y “TITLE OF THE DELIVERABLE” 

Version 1.0 
 

 

Document Information 

 

Contract Number 780681 

Project Website https://legato-project.eu/ 

Contractual Deadline  

Dissemination Level  

Nature  

Author  

Contributors  

Reviewers  

 

 

 

The LEGaTO project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Grant Agreement No 780681 

 



component is needed, which allows for querying, visualizing and understanding
the data. The MVS o�ers a diverse set of visualization options such as graphs,
histograms, gauges, gradient fills, tables, etc. It is also possible to group di�er-
ent metrics together, so that metrics from the same service or serving the same
purpose are shown in the same dashboard. This makes it easier to correlate
between them and recognize familiar patterns.

System Metrics Exporter. The main functionality of the System Metrics Exporter
(SME) is to collect and export performance metrics of the underlying system
infrastructure.

Figure 6.2. System Metrics Exporter architecture.

eBPF programs connect to specified hooks in the underlying so�ware such as
the kernel or operating system.

In order to obtain low level system metrics, we would need to access CPU per-
formance counters, kprobes, and tracepoints similarly to the Linux perf tool [3].
This requires writing code which gets executed in kernel space and making sure
that it has no security or performance impact on the normal kernel execution.
This is why we decided to make use of eBPF, the in-kernel virtual machine al-
lowing kernel instrumentation programs to run in a secure and restricted envi-
ronment.

By attaching small eBPF programs to each kernel hook, we are able to read and
extract low-level system statistics. A�erwards, we export them to userspace by
using BPF_MAPS. An architecture diagram of this component is shown in Figure
6.2.

The metrics are translated to a standard format understood by the MAS, and
published to its metric endpoint to be scraped. To measure the overhead of ap-
plication running inside enclaves, we instrument system calls, context switches,
page faults, and last-level cache metrics.

Next, we provide some experimental measurements taken during the testing of
the framework. This helps to evaluate its performance overhead on di�erent
applications. We make use of cAdvisor [7] to collect performance metrics of
containers.
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6.1.2. Monitoring Resource Usage
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Figure 6.3. 24h-average CPU and Memory consumption of the framework components.

We first present the CPU and memory consumption values of the monitoring
framework components averaged across a 24-hour window. To measure the val-
ues we used the built-in cAdvisor component, which monitors all Docker con-
tainer metrics. During the observed 24-hour period all framework components
were continuously running and providing system and application metrics during
our benchmarking runs.

To understand the overhead of the proposed framework implementation, we
measure the CPU and memory utilization of each component separately. The
values are split per component in order to better understand their respective
overheads and resource usage. As shown in Figure 6.3 (a), all monitoring com-
ponents exhibit a CPU consumption of less than 3% on average. Interestingly,
cAdvisor CPU usage is higher than the other components. We believe this is
mainly because of the large number of metrics it provides and can be reduced
by setting the –ignore-metrics flag. Particularly expensive metrics are the
ones relating to disk I/O, UDP, and TCP networking.

Figure 6.3 (b) shows the average memory consumption of each monitoring com-
ponent. Conversely to the CPU graph, the main resource consumer, in this case,
is Prometheus. While all other components stay under 100MB average memory
usage, Prometheus uses more than 400MB of system memory. This brings the
overall framework memory consumption to around 700MB. However, the higher
memory usage of Prometheus is not surprising as by design it keeps all currently
used data chunks in memory, as well as most recently used chunks for faster data
retrieval. In order to reduce Prometheus’ memory usage, one needs to limit its
caching allowance by setting the storage.local.target-heap-size flag.
The default value is 2GB according to the documentation [5]. Depending on host
specifications and developer preferences the value can be changed accordingly.
It must be said though that higher limits allow for improved performance, es-
pecially if we are dealing with high volumes of metric data as it allows to keep
more metric chunks in memory.

6.1.3. Application Overheads

Next, we measure the overhead of applications (Redis, Nginx, and MongoDB)
running inside enclave when we activate our monitoring framework.

Figure 6.4 shows a summary of the results for all three applications. The appli-
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Figure 6.4. Overhead of the monitoring system on the application’s throughput.

cation’s throughput varies from 83% and 87% of native executions for Redis and
Nginx respectively, to 95% for MongoDB. The monitoring framework appears to
account for half of that performance drop and the other half comes from the
eBPF programs running in the kernel.

We have implemented several eBPF programs attached to frequently used per-
formance counters like cache misses and references, system calls, page faults,
and context switches. In some cases like context switches we have instrumented
both hardware and so�ware counters with a high sampling frequency and this
accounts for some of the added overhead. This extra overhead can be reduced
by disabling unnecessary performance counters, reducing sampling frequency
for perf so�ware counters or filtering metrics like system calls and context switches
to only a specified PID. To facilitate filtering, we provide a macro for some of the
programs which can be set in the eBPF configuration file.

Finally, we present several screenshots showing di�erent visualization panels
from the Grafana dashboards included in our monitoring framework. Figure 6.5
shows the per-minute rate of page faults happening in kernel and user-space.
The top panel takes the data from the eBPF program, while the bottom panel
shows the page fault metrics provided by the VMStat tool in Linux.

In Figure 6.6, we show di�erent visualization panels relating the EPC and eBPF
metrics. The top row consists of several panels showing: (i) total number of en-
claves, (ii) active enclaves, (iii) total number of eBPF programs, (iv) status of each
eBPF program. Second row includes several counters relating to the EPC pages
such as: (i) total number of pages, (ii) free pages, (iii) allocated pages, (iv) pages
added to enclaves using EADD instruction, (v) evicted pages (EWB instruction),
(vi) pages loaded back to the enclaves from main memory (ELDU instruction).
In the third and last row, we provide a panel showing the per-minute changes
of the EPC counters. The visible bump shows how the value changes when we
started an instance of Redis running inside an enclave using our SCONE tool
chain.

In Figure 6.7, we visualize the per-minute rate for each system call at entry. On
the right-hand side of the panels is a table showing the current and total values
for each system call in descending order. The visualization panel for system calls
at exit is identical.
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Figure 6.5. Page faults metric visualizations: eBPF metrics (top), VMStat metrics (bottom).

6.2. Design space Exploration of a Fault Tolerant Runtime System
This section presents a case study of integrating a checkpoint library inside a
runtime system. We use LEGaTO’s checkpoint library called FTI.

Overall the rest of this section provides a brief background on the runtime sys-
tem we used, on the internals of the checkpoint library and finally an initial
assessment of how checkpoint/restart could be integrated inside a runtime sys-
tem.

Figure 6.6. Enclave Page Cache metric visualization.
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Figure 6.7. System Calls metric visualization.

6.2.1. Runtime (MPC) System Background

MPC [85] is a framework dedicated to the smooth integration of shared-memory
parallel programming models in MPI applications. To this end, MPC provides
di�erent implementations such as MPI, OpenMP, and Pthread, all unified on top
of the same user-level thread scheduler. By having its own MPI implementa-
tion and its own thread scheduler, MPC is then able to execute MPI processes in
di�erent configurations, as discussed below. One can consider that all MPI im-
plementations fit into one of two categories: process-based and thread-based.

Process-based implementations are based on MPI Processes being regular UNIX
processes, with separate address spaces. Most MPI implementations fit in this
category, such as MPICH and OpenMPI. An indirect consequence is that applica-
tions may feature global variables duplicated for each MPI process running as a
UNIX process.

To address this second configuration, MPC relies on a privatizing compiler to
transparently separate global variable by creating multiple copies of it for each
MPI process, thanks to a hierarchical TLS storage approach [33].

6.2.2. Fault Tolerance Interface Background

FTI is a multilevel checkpointing library with a wide set of features. Writing
checkpoints in local storage is su�icient to put up with so� errors but cannot
withstand node failures, data stored in the local storage being inaccessible un-
til the node is repaired. Therefore, a local checkpoint has to be combined with
some sort of data redundancy to tolerate one or multiple node crashes. For
this purpose FTI implements several approaches, which in the context of FTI
are called levels, such as data replication on a partner node, data redundancy
through Reed-Solomon encoding, or data persistence into the parallel file sys-
tem. The concept1 is depicted in Figure 6.8. Level 1 checkpoint is the least reliable
level but also the fastest, while Level 4 is the most reliable but also the slowest
of all levels. Given that most failures in supercomputers do not a�ect all nodes
simultaneously, there are possibilities to combine the levels to yield improved

1The relation between resiliency and C/R overhead is not linear and depends on multiple
factors, e.g number of nodes of the system, we only demonstrate the concept of multi-level
checkpoints
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performance, with in the FTI context.

Level-1 (Local Storage) :
Fastest checkpoint level. 

Level-2 (Partner Copy) :
Ckpt. Replication. Copy to 
neighbor node. 

Level-3 (RS Encoding) :
Ckpt. Encoding. 

Level-4 (File System (PFS)) :
Classic Ckpt. 

Checkpoint/Restart Overhead
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Figure 6.8. Di�erent FTI checkpoint level and the conceptual trade-o�s between Re-
siliency and C/R overhead.

FTI implements the checkpoint procedure into two phases as follows: i) write
the checkpoint in local storage ii) post-process the local checkpoint. Post pro-
cessing typically includes a data redundancy technique, which requires some
kind of processing, either by transferring data through the network or by per-
forming extra computations. This additional work can be done locally, impeding
extra overhead to the application. As far as this post processing is concerned,
FTI o�ers the option to dedicate one process per node from the application in
order to perform the post-processing. In this case, the dedicated processes are
isolated from the application processes.

Using this technique, application processes can pursue their execution as soon
as the local checkpoint has been made. Data replication is o�loaded to these
helper processes in parallel to the regular execution. In Figure 6.9 we depict the
main concept of the approach. This has been proven to be quite e�icient.

Time

Process  1

Process  2

Process  3

Process  4

Application Execution Local Ckpt. Data tranfers

(a) MPI Process performs inline checkpoint, all
data are moved by the application itself

Time

Process  1

Process  2

Process  3

Process  4

FTI Process 

Application Execution Local Ckpt. Data tranfers

(b) MPI Process only stores local checkpoint,
the data are moved by extra FTI processes

Figure 6.9. Application processes perform the data movements to the correct checkpoint
level versus FTI performing the data movements on the background

6.2.3. Integration of FTI in a Modern Runtime

Although, the benefits of asynchronous checkpoints are obvious, as in terms of
overhead it virtually transforms all checkpoints into local checkpoints, it is not
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always feasible or suggested to assign an entire CPU core to a checkpoint dedi-
cated process. On the one hand, there are limitations depending the character-
istics of the application. For example many scientific application which operate
on 3D grids require the number of processes to be a cube of naturals number.
This restriction, combined with the number of available cores in a specific sys-
tem might not leave room for extra processes. On the other hand, strong scaling
applications can get better performance as the number of available cores in-
creases. It is not advisable to sacrifice in such a case an entire core to perform
checkpoints.

For all these reasons, we initially sought to benefit from the runtime specificities.
In particular, we moved the dedicated MPI process inside a user-level thread to
benefit from oversubscription. However, this is mainly true when the MPI process
runs on its own resources. If no core is available, this additional MPI process will
be oversubscribed. It means that this additional MPI process shares resources
with the original application. As two processes, or even threads, cannot run at
the same time on the same core, their respective code will be executed, turn by
turn, a�er context switches.

In order to mitigate oversubscription overhead, we targeted MPC’s thread-based
MPI capabilities. The interest is twofold with i) lighter context switches and ii) the
ability to use MPI waiting time (in the application) to progress checkpointing.

Hence, in a full thread-based mode, each MPI process on a node is a user-level
thread managed by a unified scheduler. Switching from one MPI process to an-
other is a user-level thread context switch, which is lighter than between two
UNIX processes. This then makes the approach involving an oversubscribed MPI
process more attractive than in a regular process-based MPI setup.

6.2.4. FTI Evaluation

This Section now studies the impact of our runtime integration on FTI for application-
level checkpointing. In particular, we compare performance between additional
MPI processes and our oversubscribed model, taking advantage of runtime threads.
For first approach, we ported Lulesh to use FTI.

As presented in Figure 6.10a which does not rely on oversubscription, using a
dedicated checkpointing process is advantaging when compared to the syn-
chronous approach which does not provide any overlap. This shows that there
is an interest in integrating such support through a user-level scheduler. Since
Lulesh works with numbers of MPI processes which are power of 3, it was not
possible to produce a su�icient number of configurations where all cores are
loaded with computation.

To e�ectively test oversubscribed application-level checkpoint restart approach
we employed FTI on a heat distribution benchmark (heatdis). Heatdis is a 2D
stencil code that distributes a 2D grid among MPI processes. Processes only com-
municate with neighbor processes for exchanging ghost cells. As this benchmark
does not impose restriction on the number of MPI processes (unlike Lulesh), we
were able to validate multiple configurations. Performance measurements were
taken on the MareNostrum 3 supercomputer at the Barcelona Supercomputing
Center (BSC). MareNostrum 3 is a 1.1 petaflop peak performance supercomputer
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with Intel SandyBridge processors. The machine features 3056 nodes connected
through an Infiniband FDR network. As presented in Figure 6.10b, we ran this
benchmark in di�erent configurations:

i) Without FTI to provide the base time; ii) with FTI and without dedicated check-
point threads (called inline post processing); iii) with FTI and a dedicated over-
subscribed MPI process (running as a runtime thread).

It can be seen that when relying on a thread to perform post checkpointing oper-
ations the overhead is slightly lower than if it was done inline, directly impacting
the code. This shows that such a model can lead to some benefits when being
used in threads.

(a) Performances without and with FTI check-
pointing methods, no oversubscribe

(b) Oversubscribing with an MPC MPI thread

Figure 6.10. Evaluation of the checkpoint overhead when performed inside of the runtime
system.

6.2.5. Assessment and Future Work

In this section we presented an initial implementation of a fault tolerant runtime
system. The FTI fault tolerance library was smoothly integrated into a runtime
system without substantial e�ort. When the runtime systems use background
helper threads (which oversubscribe the system ) to perform the data transfers
in the background the checkpoint overhead is slightly reduced.

As a next step we plan to integrate FTI inside the Nanos runtime system. In con-
trast to MPC, the Nanos runtime system through the task annotations can deter-
mine dynamically which exact memory locations have changed their values. This
information can be exploited at runtime and push data to the checkpoint files
incrementally and in parallel with the execution of other tasks. The same rea-
soning can be applied during recovery, as the data can be read from the check-
point files as they are requested by the tasks. Hence, FTI does not need to read
all the checkpoint data immediately but can incrementally read the requested
data. Finally, Nanos has better overview of the utilization of the cores, therefore,
the runtime can detect application phases in which there is limited parallel exe-
cution. During these phases the runtime system can perform the asynchronous
checkpoints, without requiring extra cores or penalise the application execution
time.

Given the positive results of this work and the LEGaTO objectives, the FTI library
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has been extended to support incremental checkpoint/recovery API functions
(described in Deliverable D3.2). These functions will be used in the upcoming
integration of FTI with the Nanos runtime system.

7. Conclusion and Next Steps
During the first 20 months of LEGaTO, the tasks of Work Package 4 have been
able to produce and release a number of so�ware components. Many of these
components were either developed as direct extensions of existing so�ware (as
OmpSs or Eclipse).

Chapter 2 has put the work presented in this document in context of the tasks
of the work package. Chapter 3 presented extensions for OmpSs compiler and
Eclipse integrated development environment. Chapter 4 presented DFiant as a
dataflow hardware description language, and OmpSs kernel identification for
mapping on Maxeler DFE. Chapter 5 described LEGaTO’s work on programming
and execution models, integrating CPU and FPGA, energy-e�iciency and security
trade-o�s, and a task-based scheduler. Chapter 6 presented components for
fault-tolerance and security.

We will continue to work in tandem with Work Package 3 for the months to come,
developing components that are natively integrated. Moving closer to the final
months of the project, more attention will be given to integration and support of
the use cases. Several specific actions are forecasted for the upcoming months
of LEGaTO in each of the running tasks of Work Package 4. We present below a
brief summary of these actions.

In Task 4.2, we will work to support scheduling with security combined with
heterogeneity- and energy-awareness, add asynchronous calls, enhance inter-
ference awareness in XiTAO. In Task 4.3 we will complete integration in Eclipse
Che and its compilation environment. In Task 4.4 we will finalize support for
FPGAs, advance LLVM prototype and determine its limitations. In Task 4.5 we
will improve dynamic DFiant dataflow constructs, integrate with OmpSs, multi-
level simulator, and implement a use-case. In Task 4.6 we will continue the in-
tegration of MaxJ with OmpSs. Finally, in Task 4.7 we will integrate checkpoint-
ing with scheduling and runtime and integrate hardware monotonic counters
against rollback attacks.
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