
D4.3 “FINAL RELEASE OF ENERGY-EFFICIENT,
SECURE, RESILIENT TASK-BASED

PROGRAMMING MODEL AND COMPILER
EXTENSIONS, INCLUDING FPGA TOOLCHAIN”

Version 1

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline 31 May 2020

Dissemination Level Public

Nature Report

Author Osman Unsal (BSC)

Contributors Marcelo Pasin (UNINE), Christian Göttel (UNINE),
Isabelly Rocha (UNINE), Do Le Quoc (TUD), Oleksii
Oleksenko (TUD), Xavier Martorell (BSC), Leonardo
Bautista-Gomez (BSC), Mustafa Abduljabbar
(CHALMERS), Oron Port (TECHNION), Tobias Becker
(MAX), Nils Voss (MAX)

Reviewers Pascal Felber (UNINE), Tobias Becker (MAX)

The LEGaTO project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 780681.

D4.3 Version 1 1 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Ref. Ares(2020)3293542 - 24/06/2020

https://legato-project.eu/

Change Log

Version Description of Change

1226 2020-03-05, File created

1270 2020-04-23, Added section structure for partner input

1302 2020-05-06, Added SCONE Engergy section

1303 2020-05-07, Added SCONE Fault Tolerance section

1310 2020-05-09, Updated SCONE energy section

1321 2020-05-13, Added DFiant section

1326 2020-05-13, Adding Alya with FTI

1327 2020-05-14, Drafted XiTAO section

1329 2020-05-15, Added DFiant FSM example

1332 2020-05-16, Updated DFiant section

1334 2020-05-18, Added OmpSs Maxeler interoperability

1335 2020-05-18, Updated XiTAO section

1338 2020-05-19, Added Hermes

1341 2020-05-20, Added OmpSs-SGX

1353 2020-05-28, Completed OmpSs-SGX, fixed formatting

1361 2020-05-28, Added MAXJ specific sections

1364 2020-05-28, Updated MAXJ specific sections

1365 2020-05-29, Added compilation figures and full stack

1401 2020-06-04, 1st review

1404 2020-06-08, Revised Chapter 5

1406 2020-06-08, Added better reference to XiTAO

1408 2020-06-08, 2nd review

1430 2020-06-09, Revised introduction, chapters 3, 4, 6

1434 2020-06-09, Revised XiTAO energy

1435 2020-06-09, Updated introduction

This log reflects actual revision numbers from SVN (version control software used).

D4.3 Version 1 2 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Index

1 Executive Summary . 7

2 Introduction . 8

3 Compiler Support and Development Environment 12
3.1 The OmpSs Compiler . 12
3.2 The XiTAO Data Parallel Interface . 12
3.3 The DFiant Language & Compiler . 12

3.3.1 Interfaces . 13
3.3.2 Simplified State Machines . 14
3.3.3 Synchronous RTL Hardware Description 14
3.3.4 Multistage Meta-Programming 15

3.4 The MaxCompiler Toolflow . 16

4 Integration of the Dataflow Programming Substrates 17
4.1 OmpSs–XiTAO Integration . 17
4.2 OmpSs–DFiant Integration . 17

4.2.1 Interface Hooks . 18
4.2.2 Compilation Flow Hook . 19

4.3 OmpSs–Maxeler Integration . 19
4.3.1 Overview of the Execution Environment 19
4.3.2 Runtime Implementation . 20
4.3.3 Current Tests . 21

5 Energy-E�ciency . 22
5.1 The XiTAO Energy Aware Scheduling 22
5.2 Energy-e�cient IoT Data Deduplication 23

5.2.1 Background on Data Deduplication 25
5.2.2 Hermes architecture . 27
5.2.3 Evaluation of Hermes . 28

5.3 HEATS Scheduling Policy . 29
5.4 Secure Energy-e�cient Computation using SCONE 32
5.5 OmpSs–SGX Integration . 33

6 Fault-Tolerance . 35
6.1 Alya Integration with FTI . 35
6.2 Fault Tolerance with Scone . 36

7 Conclusion . 39

8 References . 40

D4.3 Version 1 3 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

List of Figures

2.1 The LEGaTO stack and relation of components with LEGaTO goals . 8

3.1 The basic structure of a DAG based program inserting SPMD code
regions . 13

3.2 Interface definition example (MemConn) and multi-directional in-
stantiation . 14

3.3 Block diagram of the connectivity in Figure 3.2 14
3.4 FSM example that generates a valid 0x55 data for a single step . . 15
3.5 Cumulative sum DFiant code with synchronous constraint tags . . 15
3.6 Cumulative sum compiled DFiant RTL-equivalent code 15
3.7 Cumulative sum compiled VHDL (2008) code 16

4.1 Integration of OmpSs and XiTAO environments 18
4.2 Integration of OmpSs with the DFiant environment 19
4.3 A loopback task OmpSs kernel signature 20
4.4 The DFiant design interface for the loopback in Figure 4.3 20
4.5 A matrix multiplication task OmpSs kernel signature 20
4.6 The DFiant design interface for the matrix multiplication in Fig-

ure 4.5 . 20
4.7 Integration of OmpSs with the Maxeler environment 21

5.1 Compression ratio real-world water meter measurements IoT data
set under di�erent algorithms. The original data size is divided by
the compressed data size - higher is better. 24

5.2 Communication mechanisms. 27
5.3 Micro-benchmark on Raspberry Pi 4B. 28
5.4 Macro-benchmark on Raspberry Pi 4B cluster. 29
5.5 Workload injected by the synthetic trace: tasks arrive in 4 bursts

of up to 262 concurrently running containers. 30
5.6 CPU and memory usage distribution (percentiles) across all ma-

chines in the cluster. We show these metrics with three di�erent
schedulers: HEATS in two configurations (H=0, H=1) on the first and
second row, Kubernetes in the third row. 31

5.7 Energy e�ciency and impact on the overall runtime of the trace
for several scheduling policies. 31

5.8 The average of energy consumption of native Tensorflow and Ten-
sorflow with SCONE in training Cifar10 dataset. 33

5.9 Integration of OmpSs with SGX Enclaves 34
5.10 Matrix multiplication application implemented with OmpSs. 34
5.11 OmpSs matrix multiplication application integrated with SGX. . . . 35

D4.3 Version 1 4 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

6.1 Our compiler-based protection mechanism transforms original
code: (a) replicating original instructions with ILR for fault detec-
tion (b) and covering the code in transactions with Tx for fault re-
covery (c). Green lines highlight instructions inserted by our com-
piler using ILR and Tx. 37

D4.3 Version 1 5 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

List of Tables

3.1 The parameters input by user to the XiTAO data parallel interface . 12

5.1 Hardware characteristics of our cluster. 30

D4.3 Version 1 6 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1. Executive Summary
This report describes the final release of the LEGaTO toolchain frontend. It is
issued at the same time as Deliverable D3.3 on the backend, and includes many
components that complement the ones presented there.

This deliverable D4.3 extends and supersedes deliverable D4.2 “First release of
the task-based programming model and compiler extensions”. To avoid overlap
between the two documents, we choose to highlight only those components that
are novel or have been considerably updated since D4.2. Overall, this deliverable
covers work that has been done during the past 10 months, from M20 until M30.

The text of this deliverable reports the status of the LEGaTO tool chain frontend
(work package 4) and is organized in four main technical chapters.

Chapter 3 Compiler Support and Development Environment

Chapter 4 Integration of the Dataflow Programming Substrates

Chapter 5 Energy-E�ciency

Chapter 6 Fault-Tolerance

Chapter 3 provides the pointer to OmpSs compiler related work that is discussed
in D3.3. The data parallel interface which forms the core of the XiTAO program-
ming model is introduced next. We then discuss the stable version of the Dfiant
language and compiler. The final MaxJ compiler toolflow concludes this section.

The next section Chapter 4 details the first integration of the LEGaTO runtimes.
In this first integration, the focus is on individual integration of the LEGaTO
dataflow substrates of XiTAO, Maxeler and DFiant with the OmpSs programming
model. Each integrated component is described in this section. A new integra-
tion page is available at https://legato-project.eu/software/integration and all
integrated components are added to the LEGaTO github.

Chapter 5 highlights the energy-e�ciency e�ort, first introducing the XiTAO
energy-aware scheduling approach, followed by the work on energy-e�cient IoT
Data Deduplication. The advance on the HEATS energy scheduler in the period of
M20 to M30 is described next. Finally two orthogonal work that focus on security
are described, first the energy-e�cient aspects of the secure SCONE framework
is described. Finally the first integration of OmpSs tasking model with Intel SGX
security framework is detailed.

Chapter 6 summarizes the Fault-tolerance work at the programming model and
compiler layers. First the integration of the ALYA software framework which pow-
ers the smart city use case with the Fault Tolerance Interface (FTI) checkpointing
library is described. Then, finally fault tolerance aspects of the secure SCONE
framework is described.

D4.3 Version 1 7 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://legato-project.eu/software/integration

2. Introduction
The objective of the LEGaTO project is to develop a software toolchain for hetero-
geneous hardware with the energy e�ciency as the main focus. The project also
considers security, fault-tolerance, and programmability together with energy-
e�ciency. To set the stage, we include a brief reminder of the LEGaTO stack in
Figure 2.1. In the figure, we present a birds-eye view of the various components
used in the project, arranged hierarchically in the compute stack starting from
use cases, to programming model, compiler and high level synthesis (HLS) lan-
guages, runtime, middleware and hardware. In addition to the description of
the particular stack level (hardware, middleware, runtime, applications), Work
Package identifiers were also included.

LEGaTO
aspects

Smart Home

Secure IOT Gateway

WP5 USE CASES

PROGRAMMING
MODEL

COMPILER
& HLS

RUNTIME

MIDDLEWARE

HARDWARE

WP4

WP3

WP2

Smart City

Sequential Task-Based OmpSs programs

C and HLS Source Code

C Source Code

Native compiler and Linker

CPU/GPU Binaries Bitstream

Deployment, Monitoring, Control

FPGA Synthesis

RTL

Compilation

Runtime

Microserver

Hardware

Platform

XiTAO Front-End

XiTAO Runtime

SCONE Compiler Mercurium MaxCompiler AutoAit DFiant HLS

 OmpSs Eclipse IDE Plug-In

Machine Learning

CPU GPU FPGA/DFE

Healthcare

SecurityProgrammabilityEnergy- Efficiency Fault - tolerance

SCONE Runtime HEATSNanos Runtime Fault-Tolerance
Interface

OpenStack and RECS_Master Middleware

Redfish API for Node Composition, Monitoring and Control

Figure 2.1. The LEGaTO stack and relation of components with LEGaTO goals

Five use cases are developed in the context of LEGaTO. The first use case is a
smart home application, processing privacy-sensitive information in order to
provide assisted living recommendations. The second use case is a smart city
application to model air quality in near-real time using fluid dynamics. The third
use case is an energy-e�cient machine learning application with surrounding
perception and trajectory calculation for self-driving cars. The fourth use case
is a computationally intensive Monte Carlo method for obtaining reliable classi-
fiers, to identify specific biomarkers that allow for diagnosing each disease more
precisely. The fifth use case is related to the smart home/city use cases and is
focused on IoT security and usability, developing a gateway for (secure) network
connections of local and remote network devices.

D4.3 Version 1 8 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

In order to support applications (and the use cases), LEGaTO proposes a pro-
gramming model and corresponding compilers, including high-level synthesis
for FPGAs. Below the use cases in Figure 2.1, one finds the task-based OmpSs
programming model that implements a write-once run-anywhere approach with
mapping into CPUs, GPUs and FPGAs. An eclipse IDE plug-in facilitates program-
ming leveraging OmpSs. OmpSs leverages multiple compilers to map tasks to
CPUs (Mercurium, SCONE and XiTAO front-end), Dataflow Engines (MaxCompiler),
and FPGAs (autoVivado), as well as the LEGaTO-developed HLS, called Dfiant, to
map high-level kernels into FPGAs. XiTAO is an experimental task-based pro-
gramming abstraction that naturally accompanies OmpSs and provides elastic-
ity. SCONE tool ensures secure execution of applications.

The LEGaTO runtimes of XiTAO and Nanos work together to seamlessly run
OmpSs tasks in a dataflow fashion on the various hardware platforms in an
energy-e�cient way. In particular, the XiTAO runtime is used as a research de-
velopment vehicle within the Nanos scheduler providing higher level scheduler
decisions. LEGaTO tasks are run securely by leveraging Intel SGX security hard-
ware extensions through SCONE’s runtime. For fault-tolerance the project has
developed checkpointing solutions on LEGaTO GPUs and FPGAs as well as CPUs
that are enacted using the Fault-tolerant Interface (FTI) annotations. Finally, the
HEATS heterogeneous scheduler ensures energy-e�ciency at the runtime level.

The runtime-optimized tasks are then mapped to energy e�cient low form fac-
tor LEGaTO hardware through the use of the Redfish interface that o�ers config-
urability of the hardware resources. Monitoring and control of the hardware is
exposed through a REST API to higher layers.

Task Progress Summary

We now provide a brief synopsis of the technical advances by task. WP4 has
seven tasks, as presented below, and each task pushes forward a di�erent aspect
in the development of a number of components.

• Task 4.1: Definition / Design

• Task 4.2: Programming Model Features for Energy E�ciency

• Task 4.3: IDE Plugin

• Task 4.4: Compiler Support

• Task 4.5: High-Level Synthesis for FPGA

• Task 4.6: Task-based Kernel Identification/DFE Mapping

• Task 4.7: Fault Tolerance and Security

Task 4.1 ended at month 9 and most of its work has been reflected into Chap-
ter 4 of Superdeliverable SD1. The remaining tasks (4.2–4.7) are intended to run
throughout almost the entire project, and will develop di�erent components of
the front-end tool chain. Task 4.1 Definition/Design presented in SD1 a com-
prehensive set of functionalities designed to be o�ered as front-end tools for
programming applications. A software architecture was introduced with all main

D4.3 Version 1 9 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

aspects on which LEGaTO is focused (fault-tolerance, heterogeneity, multicom-
puter execution, energy e�ciency and the extension of the programming model).
It also provided a number of extensions to be implemented in the infrastructure
management to support the execution of the proposed task model.

In Task 4.2 Programming Model Features for Energy E�ciency, we have upgraded
OmpSs@FPGA through several releases. The current release is 2.2.0. It includes
the new version of autoAIT (formerly autoVivado), that now supports the Xil-
inx Development kit ZCU102 (various revisions, up to 1.1). We also upgraded the
support for up to Vivado HLS 2019.3. autoAIT incorporates better support for in-
ternal FPGA instrumentation, improved kernel module, with better management
of the information exposed to the runtime about the environment characteris-
tics, and configuration file. Moreover, in Task 4.2, the XiTAO runtime system now
o�ers a DAG-friendly data-parallel interface, that can leverage XiTAO’s energy-
e�cient scheduling features on heterogeneous platforms in a wider spectrum
of applications. The parallel loops can now be nested in generic DAG workflows
in place. This essentially eases the construction of mixed-mode parallel DAG
in XiTAO. Additionally, we observe that energy e�cient high-performance com-
pression algorithms are compute intensive and therefore are not applicable to
IoT devices. Therefore, we propose data deduplication (avoiding to send same
or similar data) to save energy in IoT devices. Finally, we continued our work
in the HEATS scheduler which was introduced in D4.2. For D4.3, we evaluated
performance and energy e�ciency of HEATS.

In Task 4.3 IDE Plugin, we have upgraded the IDE plugin support for new releases
of Eclipse CHE, currently up to CHE version 7.

In Task 4.4 Compiler Support we have added a Maxeler DFE architecture plugin
to the OmpSs runtime, to support spawning of tasks to Maxeler hardware. After
having an initial implementation working with matrix multiplication, we have fi-
nalized the integration of the OmpSs and Maxeler programming models, so that
the OmpSs runtime is now able to start DFE kernels developed with the Max-
eler toolchain. We have checked the implementation on MAX3 (local at BSC) and
MAX5 (JuMAX at Julich Supercomputing Center) platforms. Also in Task 4.4 by
using resource sharing constructs developed in D4.2, we now showcase inter-
operability between XiTAO and OmpSs, where the two runtimes collaboratively
execute batch-tiled matrix multiplication, and should eventually be compatible
with the OmpSs programming model. The integration repository is available at :
https://github.com/legato-project/nanos-xitao-integration.

For Task 4.5 High-Level Synthesis for FPGA, we have produced the stable version
of the DFiant compiler and programming model. The key improvement is in the
compiler: the DFiant Intermediate Representation (IR) was modified to allow
functional programming of its compilation stages. Other improvements involved
updating the interface to facilitate composable port addition, a new simplified
Finite State Machine (FSM) syntax and the addition of constraint tags that allow
the injection of RTL like semantics into Dfiant code. We have integrated the
execution of DFiant kernels from OmpSs. The programmer can now write DFiant
kernels to replace the computation functionality to be executed in the FPGA.
These kernels are linked to the wrapper of the function as generated from OmpSs
through autoAIT.

D4.3 Version 1 10 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://github.com/legato-project/nanos-xitao-integration

Task 4.6 Task-Based Kernel Identification/DFE Mapping: Besides the integration
with OmpSs, we have developed a Mercurium compiler pass to obtain the com-
munication weights between DFE kernels, and the computation load of DFE ker-
nels, in order to compute the ratio between computation and IO of the kernels
and decide the proper mapping of DFE kernels. Furhtermore we have developed
new graph analysis tools.

In Task 4.7 Fault Tolerance and Security, we have done a first integration of OmpSs
with Intel SGX security extensions. Moreover, we successfully integrated our
toolchain SCONE with Hardware-Assisted fault tolerance (HAFT) to enable fault-
tolerance for legacy applications running inside SGX enclaves. We ensure the
confidentiality and integrity of the applications by running them inside SGX en-
claves with the help of SCONE. We make use of HAFT to provide fault-tolerance
for the applications, i.e., protect them against transient hardware faults. HAFT
leverages instruction-level redundancy for fault detection and hardware trans-
actional memory for fault recovery. In addition, we developed TEEMon—the first
continuous performance monitoring and analysis tool for TEE-based applica-
tions. The tool provides not only fine-grained performance metrics during run-
time, but also assists the analysis of identifying causes of performance bottle-
necks, e.g., excessive system calls. We integrated TEEMon with Kubernetes to
monitor the performance of an application running inside more than 6000 dis-
tributed SGX enclaves using SCONE. Finally, we have rewritten the ALYA library,
which forms the core of the smart city use case to use Fault-Tolerance Interface,
our checkpointing library.

Document Structure

In the following, this document contains four technical chapters, laid out as fol-
lows. Chapter 3 describes the advance with respect to D4.2 on main components
that pertain to the LEGaTO frontend toolchain, namely OmpSs, XiTAO, DFiant and
MaxCompiler. Chapter 4 details individually the integration of XiTAO, DFiant and
MaxCompiler with OmpSs. This is followed by the project advance in energy-
e�ciency aspects in Chapter 5. Finally, Chapter6 discusses the annotation of the
smart city use case application to support FTI, the LEGaTO checkpointing solu-
tion, and concludes by how the project is addressing fault tolerance and security
together through the SCONE tool.

D4.3 Version 1 11 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

3. Compiler Support and Development Environment
This Chapter presents the current snapshot of LEGaTO´s compiler and program-
ming model substrates as well as the advance since D4.2. These main four sub-
strates are OmpSs, XiTAO, DFiant and MaxCompiler. In Section 3.1 we provide a
short pointer to the OmpSs compiler work which is being reported in D3.3. Sec-
tion 3.2 details the data parallel interface for XiTAO while Section 3.3 discusses
the last stable version of the Dfiant language and compiler and finally Section
3.4 outlines the MaxCompiler toolflow.

The next Chapter will discuss the first integration of the dataflow substrates
which consist of individual integration of OmpSs with XiTAO, Dfiant and Max-
Compiler.

3.1. The OmpSs Compiler
Most of the OmpSs compiler work, both for FPGA and for cluster versions have in-
volved heavier involvement of the backend, therefore the OmpSs compiler work
has also been described in D3.3.

3.2. The XiTAO Data Parallel Interface
XiTAO incorporates modern C++ compiler technology to deliver a DAG-friendly
data parallel interface. With this interface, many applications that consist of
parallel Single Program Multiple Data (SPMD) regions can leverage the backend
features o�ered by the XiTAO RT including energy e�ciency and interference
awareness depicted by WP3. The interface is relatively simple to use. Listing 3.1
shows how a loop parallel region, for example, can be part of a full DAG structure
using the XiTAO programming interface. Also, Table 3.1 highlights the interface
parameters. In this deliverable, the capability of nesting loop parallel nodes
in a DAG workflow has been supported. Also, a few explanatory benchmarks
adopted from Rodinia Benchmark Suite and Barcelona OpenMP Task Suite are
being developed and will soon be part of the XiTAO online repository.

Parameter Usage

width The XiTAO resource hint to be given to the loop tasks.
iter The loop index/iterator.
end The loop end.
sched The scheduling options (e.g., static, dynamic, energy-aware, etc.)
block_size Governs the granularity of task creation.

Table 3.1. The parameters input by user to the XiTAO data parallel interface

3.3. The DFiant Language & Compiler
DFiant is a dataflow hardware description language (HDL) that decouples func-
tionality from implementation constraints. DFiant brings together constructs
and semantics from dataflow, hardware, and software programming languages

D4.3 Version 1 12 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 TAO_A* head_tao = new TAO_A();
2 // build DAG
3 TAO_B* serial_region = new TAO_B();
4 DataParallelTAO* data_parallel_region
5 // parallel for (int iter = 0; iter < end; ++iter) becomes
6 = __xitao_vec_region(width, iter , end, sched, block_size,
7 // data parallel code region
8)
9 serial_region->make_edge(data_parallel_region);

10 // continue building DAG
11 // push the head node
12 xitao_push(head_tao);
13 // start the DAG execution
14 xitao_start();
15 // wait for the DAG execution
16 xitao_finish();

Figure 3.1. The basic structure of a DAG based program inserting SPMD code regions

to enable truly portable and composable hardware designs. The dataflow model
o�ers implicit concurrency between independent paths while freeing the de-
signer from explicit register placement that binds the design to fixed pipelined
paths and timing constraints. DFiant is implemented as a Scala library and of-
fers a rich type safe ecosystem alongside its own hardware-focused type system
(e.g., bit-accurate dataflow types, input/output port types).

For the LEGaTO stack DFiant can be used on platforms with FPGA hardware, where
more fine-grain hardware control is required. DFiant can ease both hardware en-
gineers into the LEGaTO stack and software engineers into hardware program-
ming. DFiant is controlled by the software stack through OmpSs. See Section 4.2
for more information on the OmpSs–DFiant integration.

In this deliverable we introduce additional features of the DFiant language and
compiler that further ease hardware programmability. Nonetheless, the most
significant change occurred in the compiler internals and facilitated all the ad-
ditions and improvements we bring forth in this deliverable. The DFiant Interme-
diate Representation (IR) was modified to allow functional programming of its
compilation stages. This means that each compilation stage is immutable and
we can safely define transformations between stages. The IR is a very simple
database composed of a member list and a reference table (e.g., each mem-
ber contains an owner reference). The transformations between stages are just
patch queries that are applied on this database and can be pretty-printed as
DFiant code at each stage. Only the first compilation stage is unique since it is
mutable and constructed as the design is dynamically elaborated.

3.3.1. Interfaces

Interfaces in DFiant facilitate composable bulk port definition and connection.
Figures 3.2 and 3.3 demonstrate such a use case where we need to test the mem-
ory interface of our device under-test (DUT). The memory interface signaling typ-
ically requires redefinition for di�erent port directionality: the DUT and Driver
port directions are reversed, the Monitor ports are input-only, and finally the sig-
nals connecting them require declaration too. The DFiant syntax enables declar-
ing the interface once and reusing it in every required direction context. It is
possible to define interface hierarchies, compose them freely, or take an exist-
ing interface class and expand it via extension. Additionally, bulk connection is
applied to connect the whole interface in a single line of code.

D4.3 Version 1 13 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 @df class MemConn extends DFInterface {
2 val addr = DFBits(10) <> OUT
3 val rdData = DFBits(8) <> IN
4 val wrData = DFBits(8) <> OUT
5 val wrEn = DFBit() <> OUT
6 }
7 @df class Dut extends DFDesign {
8 val memConn = new MemConn <> ASIS //ASIS annotation is optional
9 }

10 @df class Driver extends DFSimDesign {
11 val memConn = new MemConn <> FLIP //Inverted directionality
12 }
13 @df class Monitor extends DFSimDesign {
14 val memConn = new MemConn <> IN //Input-only directionality
15 }
16 @df class Simulation extends DFSimDesign {
17 val dut = new Dut
18 val driver = new Driver
19 val monitor = new Monitor
20 val memConn = new MemConn <> VAR //Node connection variable
21
22 memConn <> dut.memConn
23 memConn <> driver.memConn
24 memConn <> monitor.memConn
25 }

Figure 3.2. Interface definition example (MemConn) and multi-directional instantiation

Simulation

Dut Driver

Monitor

addr

rd_data

wr_data

wr_En

addr

rd_data

wr_data

wr_En

ad
dr

w
r_d

ata

w
r_En

rd
_d
ata

Figure 3.3. Block diagram of the connectivity in Figure 3.2

3.3.2. Simplified State Machines

Finite state machines (FSMs) are commonly used to construct a sequential pro-
cess in hardware. So far DFiant enabled to define FSMs using a dataflow state
variable and a match case statement. The new FSM syntax allows defining and
composing state machines in a much simpler fashion. Figure 3.4 shows a simple
FSM that generates a valid 0x55 data for a single "step" (a step can be one clock
or more, depending on the backend and constraints).

3.3.3. Synchronous RTL Hardware Description

As discussed in the previous deliverable, DFiant is not an RTL but a dataflow HDL,
since it carries di�erent HDL semantics. Notwithstanding, we defined a small set
of constraint tags that manifest RTL semantics into DFiant code. To describe sin-
gle clock synchronous designs, all required is to add clock and reset constraints,
ports, and additional conditional dependency logic. The clock and reset can be

D4.3 Version 1 14 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 val single55_fsm =
2 step {
3 valid := 1
4 data := h"55"
5 } ==> waitWhile(!ready) =^> { //=^> means state-exit execution
6 valid := 0
7 } ==> waitForever()

Figure 3.4. FSM example that generates a valid 0x55 data for a single step

treated just like any dataflow values because all other data transactions are syn-
chronized to them. Consequently, we added a new compiler stage that compiles
regular (asynchronous dataflow) DFiant code into a synchronous equivalent DFi-
ant code with the additional logic and constraints. This extra stage simplifies the
RTL backend stage significantly and enables inspecting the expected RTL code
still at the DFiant level (DFiant users that are inexperienced with RTL languages
can still understand its equivalent DFiant code since it still uses dataflow se-
mantics). Figures 3.5, 3.6, and 3.7 demonstrate asynchronous DFiant code for a
cumulative sum translated into an RTL DFiant code and VHDL code, respectively.

1 import compiler.sync._
2 @df class csum extends DFDesign {
3 val i = DFUInt(8) <> IN
4 val o = DFUInt(32) <> OUT init 0
5 o := o + i
6 this !! ClockParams("clk", ClockParams.Edge.Rising)
7 this !! ResetParams("rst", ResetParams.Mode.Async, ResetParams.Active.Low)
8 }

Figure 3.5. Cumulative sum DFiant code with synchronous constraint tags

1 trait csum extends DFDesign {
2 final val clk = DFBit() <> IN !! Sync.Tag.Clk
3 final val rst = DFBit() <> IN !! Sync.Tag.Rst
4 final val i = DFUInt(8) <> IN
5 final val o = DFUInt(32) <> OUT init 0
6 final val o_var = DFUInt(32)
7 final val o_sig = DFUInt(32) init 0
8 final val o_prev1 = DFUInt(32) init 0 !! Sync.Tag.Reg
9 o_var := o_prev1

10 o_var := o_var + i
11 o_sig := o_var
12 o := o_sig
13 ifdf(rst === 0) {
14 o_prev1 := 0
15 }
16 .elseifdf(clk.rising()) {
17 o_prev1 := o_sig
18 }
19 }

Figure 3.6. Cumulative sum compiled DFiant RTL-equivalent code

3.3.4. Multistage Meta-Programming

For advanced users, DFiant has a multistage compiler that can be easily ex-
panded. Internally, each stage is usually composed of patch queries to the IR
database. To easily add members to the IR, DFiant allows a (meta) design to be
planted at various position options within the database. This ability gives power
users full control over design automation, analysis, and optimization.

D4.3 Version 1 15 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 entity csum is
2 port (
3 clk : in std_logic;
4 rst : in std_logic;
5 i : in unsigned(7 downto 0);
6 o : out unsigned(31 downto 0) := 32d"0"
7);
8 end csum;
9

10 architecture csum_arch of csum is
11 signal o_sig : unsigned(31 downto 0) := 32d"0";
12 signal o_prev1 : unsigned(31 downto 0) := 32d"0";
13 begin
14 async_proc : process (all)
15 variable o_var : unsigned(31 downto 0);
16 begin
17 o_var := o_prev1;
18 o_var := o_var + i;
19 o_sig <= o_var;
20 o <= o_sig;
21 end process;
22 sync_proc : process (rst, clk)
23 begin
24 if rst = '0' then
25 o_prev1 <= 32d"0";
26 elsif rising_edge(clk) then
27 o_prev1 <= o_sig;
28 end if;
29 end process;
30 end csum_arch;

Figure 3.7. Cumulative sum compiled VHDL (2008) code

3.4. The MaxCompiler Toolflow
MaxCompiler is a tool, which uses a Java-based meta language, called MaxJ, to
facilitate FPGA development. The tool focuses on the dataflow abstraction to
provide a high productivity programming environment. Using this abstraction,
users with a scientific or engineering background can harness the performance
of FPGAs for their use cases, without the need to become hardware experts. More
details on MaxCompiler were already described in Deliverable D2.1.

MaxCompiler is a commercial tool which has developed by Maxeler for more
than 15 years. As such, it already has a rich feature set, including a runtime
library, a functional simulator and drivers in addition to a rich library of hardware
functions.

MaxCompiler typically supports targeting Maxeler’s in-house developed FPGA-
based Dataflow Engines (DFEs). Support for Amazon EC2 F1 instances we also
previously available. During the LEGaTO project, Maxeler extended to compiler
support to Xilinx Alveo data center accelerator cards. Xilinx Alveo U200 and U250
are now system-level compatible with Maxeler MAX5 DFEs and Amazon EC2 F1,
therefore increasing the number of commercial platforms that can be targeted
with the LEGaTO toolstack.

Within the LEGaTO project, we further improved the toolchain to enable integra-
tion with OmpSs and DFiant. Further details are described in section 4.3. Most
notably, we improved the support and documentation of functionality to embed
VHDL code into a MaxCompiler design. This enabled the integration of DFiant
into MaxCompiler, which could then also use the Maxeler OmpSs integration.
Additionally, we developed examples which were used by BSC to work on the
integration and provided technical assistance.

D4.3 Version 1 16 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

4. Integration of the Dataflow Programming Sub-
strates
This Chapter introduces the individual integration of the LEGaTO dataflow sub-
strates of XiTAO, Maxeler and DFiant with the OmpSs programming model. The
integration of OmpSs tasking model with Intel SGX security framework is dis-
cussed in the next Chapter in Section 5.5.

In this Chapter, Section 4.1 details the integration of XiTAO and Nanos, two task-
based runtime engines with di�erent features and capabilities. This integration
will ensure interoperability, constructive and collaborative sharing of resources
between the two runtimes. Section 4.2 outlines OmpSs and Dfiant integration,
where dedicated DFiant plugins are developed to morph DFiant kernels into ex-
isting interfaces supported by OmpSs. Finally, Section 4.3 explains the integra-
tion of OmpSs with MaxJ Compiler where the OmpSs task-based programming
model is used as a frontend for Maxeler’s dataflow computing model where per-
formance of critical computations are o�oaded onto dedicated dataflow en-
gines.

4.1. OmpSs–XiTAO Integration
Chalmers and BSC have integrated the XiTAO and Nanos runtimes. This in-
tegration ensures interoperability, constructive and collaborative sharing of
resources between the two runtimes. Figure 4.1 shows the structure of the
joint compilation flow. Eventually, OmpSs task-graphs that require minimiza-
tion of inter/intra resource interference or include energy-critical computa-
tions can be seamlessly o�oaded to XiTAO, while ensuring that OmpSs and Xi-
TAO tasks independently run on the allocated subset of the system resources.
The integration repository, available on: https://github.com/legato-project/
nanos-xitao-integration, showcases interoperability between the XiTAO and
Nanos runtime libraries (OmpSs backend) using a block-tiled matrix multipli-
cation. The integration has the following dependencies:

• The XiTAO runtime library, which can be found at https://github.com/
mpericas/xitao.git

• Nanos6 runtime for OmpSs-2 (tested with version 2.3.2) https://github.
com/bsc-pm/nanos6.git

• gcc/g++ version >= v7.5.0

• To enable testing, cblas compliant API such as cblas-lapack (e.g., http://
www.netlib.org/lapack/#_lapack_version_3_9_0_2)

4.2. OmpSs–DFiant Integration
The OmpSs–DFiant integration hooks into the existing OmpSs@FPGA–Vivado HLS
interface and compilation flow.

D4.3 Version 1 17 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://github.com/legato-project/nanos-xitao-integration
https://github.com/legato-project/nanos-xitao-integration
https://github.com/mpericas/xitao.git
https://github.com/mpericas/xitao.git
https://github.com/bsc-pm/nanos6.git
https://github.com/bsc-pm/nanos6.git
http://www.netlib.org/lapack/#_lapack_version_3_9_0_2
http://www.netlib.org/lapack/#_lapack_version_3_9_0_2

Figure 4.1. Integration of OmpSs and XiTAO environments

4.2.1. Interface Hooks

Figure 4.2 shows the compilation flow. OmpSs generates HLS C-code that in-
cludes the kernel task function and wrapper functionality. The task code mani-
fests in RTL as the Vivado ap_ctrl interface and one of the following interfaces
for its input/output variables:

• Array memory-mapped interface. This interface is applied when the
OmpSs task kernel uses a constant SIZE for its vector arguments. The
generated OmpSs wrapper constructs one or more arrays that are accessed
by the kernel through a memory mapped interface. The number of arrays
are determined by the array_partition HLS pragma. Better optimiza-
tion may be possible if the AXI4 interface is applied instead (see next).

• AXI4 master interface + o�set. This interface is applied when the OmpSs
task kernel uses a dynamic size for its vector arguments. In this case, the
dynamic size forces OmpSs to rely entirely on the kernel for optimization
and thus provides full AXI Master interface (plus o�set) for each variable.
It is recommended to use this design option when we wish to control the
entire optimization in HDL.

To hook on the kernel interface and provide an alternative design in DFiant, we
created a dedicated lib.ompss API. Figures 4.3, 4.4, 4.5, and 4.6 provide exam-
ples of these interfaces and their equivalent DFiant hooks.

D4.3 Version 1 18 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.2. Integration of OmpSs with the DFiant environment

4.2.2. Compilation Flow Hook

The OmpSs compilation flow is executed via the arm gcc accelerator integration
tool (AIT). The AIT executes several steps: generates the HLS IP from the kernel
task, generates the entire FPGA design, synthesizes, implements, and finally gen-
erates a bitstream. To use DFiant with OmpSs, the Makefile just requires another
dependency that compiles the DFiant design after the HLS generation and before
the rest of the steps are executed (by utilizing the from_step and to_step
AIT arguments).

4.3. OmpSs–Maxeler Integration
We have integrated the runtime environments of OmpSs and Maxeler, in such a
way that we allow OmpSs applications to spawn tasks on Maxeler DFEs.

4.3.1. Overview of the Execution Environment

In this environment, programmers write the applications in C/C++ as it is regu-
larly done with OmpSs, and they write the accelerated kernels using the Maxeler
MaxJ language. The decision of which kernels to port to MaxJ from OmpSs is
covered by Task T4.6 which is still ongoing.

Figure 4.7 shows the structure of the development environment. Compilation for
the Maxeler device follows the usual toolflow provided by Maxeler. Starting from
the MaxJ kernels, MaxCompiler generates the VHDL code, that is later synthesized
by the Xilinx Vivado tool to generate the bitstream. Additionally, MaxCompiler
generates functions which are callable from C/C++ to initiate data transfers and
start the kernels in the Maxeler DFE, using the Maxeler SLiC interface. This is the
interface that the OmpSs runtime will invoke to start the execution on the DFE.

The OmpSs part of the application is compiled with the CPU compiler (GCC, ICC).
During initialization, the SLiC interface is used to register the kernel functions
compiled through MaxJ, onto the Maxeler runtime.

The Nanos runtime creates a helper thread for each Maxeler DFE present in the
system. Once tasks are created using the newly implemented max target device
(see below), they are managed by such helper threads. Additionally, when a
helper thread finds a task, it connects with the kernel function through the SLiC

D4.3 Version 1 19 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

1 #pragma omp target device(fpga) copy_deps
2 #pragma omp task in([size]i) out([size]o)
3 void loopback(int * i, int * o, int size) {
4 //...
5 }

Figure 4.3. A loopback task OmpSs kernel signature

1 import lib.ompss._
2 @df class loopback_ifc extends OmpssIfc {
3 val i = OmpssAXI <> IN
4 val o = OmpssAXI <> OUT
5 val size = DFBits(32) <> IN
6 }
7 @df class loopback extends DFDesign {
8 val io = new loopback_ifc
9 import io._

10 //...
11 }

Figure 4.4. The DFiant design interface for the loopback in Figure 4.3

1 const unsigned int BSIZE = 16;
2 const unsigned int SIZE = BSIZE*BSIZE;
3 #pragma omp target device(fpga) num_instances(1)
4 #pragma omp task in([SIZE]a, [SIZE]b) inout([SIZE]c)
5 void matmul(const elem_t *a, const elem_t *b, elem_t *c) {
6 #pragma HLS array_partition variable=a cyclic factor=4
7 #pragma HLS array_partition variable=b cyclic factor=BSIZE/4
8 #pragma HLS array_partition variable=c cyclic factor=BSIZE/2
9 //...

10 }

Figure 4.5. A matrix multiplication task OmpSs kernel signature

1 import lib.ompss._
2 @df class matmul_ifc extends OmpssIfc {
3 val BSIZE = 16
4 val SIZE = BSIZE * BSIZE
5 val a = OmpssARR(SIZE, 4) <> IN
6 val b = OmpssARR(SIZE, BSIZE / 4) <> IN
7 val c = OmpssARR(SIZE, BSIZE / 2) <> INOUT
8 }
9 @df class matmul extends DFDesign {

10 val io = new matmul_ifc
11 import io._
12 //...
13 }

Figure 4.6. The DFiant design interface for the matrix multiplication in Figure 4.5

interface to transfer the data and execute the kernel in the DFE.

4.3.2. Runtime Implementation

We have extended the Nanos++ runtime system to support the new target device
architecture, named max. This information is contained on a device descriptor,
which invokes the Maxeler runtime when needed for the following functionali-
ties:

• Memory allocation: to obtain and manage memory that is accessible from
the Maxeler DFE devices.

• Data transfers: to move data in and out of the DFE device, with various
flavors, single dimension vectors, 2-dimensional matrices, etc.

D4.3 Version 1 20 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 4.7. Integration of OmpSs with the Maxeler environment

• Kernel management: invoking kernels and triggering the data transfers are
operations that the Maxeler DFEs accept through attached queues. When
the task including the kernel is ready from dependencies, Nanos++ ensures
to enqueue first the input data transfers, then the kernel invocation, and
finally the output data transfers.

4.3.3. Current Tests

We have tested the environment in two di�erent Maxeler platforms:

• MAX3 environment: Intel Xeon X5690 @3.4Ghz, with MAX3 boards.

• MAX5 environment: Intel Xeon, with MAX5 boards.

We have run the matrix multiplication kernel on both platforms.

D4.3 Version 1 21 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5. Energy-E�ciency
This Chapter is composed of five sections presenting an overall status update on
LEGaTO’s tools for energy e�ciency. Section 5.1 makes a small reference to Xi-
TAO’s energy e�ciency, which is entirely reported in Deliverable D3.3. Our work
on Hermes, an application-level protocol for the data-plane that can operate
over generalized deduplication, as well as over classic deduplication is intro-
duced in Section 5.2. Hermes significantly reduces the data transmission tra�c
while e�ectively decreasing the energy footprint, a relevant matter to consider
in the context of IoT deployments. Section 5.3 presents an evaluation of HEATS,
the energy-aware orchestrator for containerized applications already introduced
in Deliverable D4.2. In Section 5.4 we present an evaluation of SCONE, also al-
ready introduced in previous deliverables. Our evaluation compares native and
SCONE applications regarding energy consumption, which is due to additional
encryption, decryption and paging. Finally, our initial e�orts on integrating SGX
enclaves with OmpSs are introduced in Section 5.5, with a first impression on
energy consumption with a multithreaded matrix multiplication application.

5.1. The XiTAO Energy Aware Scheduling
XiTAO is a lightweight layer that provides a task-parallel and data-parallel in-
terface using modern C++ features. The design goals of XiTAO are to be low-
overhead and to serve as a development platform for testing scheduling and
resource management algorithms. The new energy related features pertaining
to XiTAO are at the runtime level, hence, they are described in D3.3. For conve-
nience, we summarize here the most important features that were developed as
part of the energy-e�cient XiTAO runtime system.

XiTAO Virtual Places Mapping: The granularity of the software topology mapping
is managed by XiTAO at runtime. Rather than mapping to a single core, the
runtime can decide to mold a task on more than one core without disrupting
the specified locality. To aid the mapping, a hardware layout description may
be optionally passed to the runtime. This particularly convenient when tar-
geting asymmetric platforms in which di�erent clusters feature heterogeneous
numbers of cores. The runtime scheduler is designed to search for the optimal
execution place for a task depending on an online performance model.

The Energy-Aware Scheduler (EAS): We have developed an energy e�cient
task scheduler that reduces energy consumption by determining energy-aware
mappings for all tasks, which addresses the problem of scheduling task-DAGs
on asymmetric systems (such as e.g. big.LITTLE) where frequencies are either
fixed or externally managed by an OS power governor. The task scheduler
features several components: power characterization profiles, a performance
tracer, a global parallelism tracer and a local task mapping algorithm.

Support for Tensor-Expression Language on top of a Pipeline Parallel Sched-
uler: Commonly, applications expressed as streaming chain graphs (DAGs)
are implemented as parallel pipelines for e�cient scheduling on multi-core
computing platforms. In XiTAO, an application is expressed as a DAG where

D4.3 Version 1 22 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

each node is a standalone Task Assembly Object (TAO). A TAO can be serial
or parallel. Parallel TAOs contain their own local scheduler. The mode of
parallelism inside a TAO is mostly data parallelism, but amorphous forms of
parallelism are also possible. Thus, XiTAO is usually used as a mixed-mode
parallel programming model, which is convenient to express streaming parallel
pipelines. We implement pipeline stages as self-calling TAOs (i.e. making an
edge to themselves). For the sake of usability and expressiveness, we designed
a simple template based language that generates XiTAO code for to process
deep neural network applications. Convolutional Neural Networks (CNN) consist
of several convolutional layers in combination with computationally light layers
such as maxpooling and softmax layers. Each layer processes the output of the
previous layer and produces output for successive layers. The structure of CNNs
resembles chain graphs. Moreover the inference phase of CNNs is applied on a
stream of input units for example object identification in video stream. Thus,
CNNs are a good case for experimenting with pipeline parallelism under the
XiTAO environment.

5.2. Energy-e�cient IoT Data Deduplication
The ever growing number of connected devices is also a result of the adop-
tion and expansion of Internet of Things (IoT) technologies. IoT devices are
most commonly low-energy, yet e�cient and powerful devices which dissem-
inate data on the Internet. This data is predicted [13] to amount to 175 ZB by
2025. Furthermore, the number of deployed IoT devices will grow to 1.25 billion
units by 2030 [11]. The pressure on the Internet will continue to increase and with
it challenge researchers to come up with new innovations (e.g., 5G and beyond)
to avoid its collapse.

Data compression [20], deduplication [25] or network coding (NC) tech-
niques [40] have been proposed to overcome these challenges. On the one
hand, the redundancy introduced by NC is interesting given the unreliable na-
ture of the data streams commonly found in real-world IoT deployments [6]. On
the other hand, compression and deduplication are interesting given the com-
pression potential of IoT-generated data (e.g., smart power meters [27], weather
stations [16], bio-medical body sensors [10]). To demonstrate the high compres-
sion potential, we applied di�erent compression algorithms to a real-world IoT
data set in Figure 5.1 from the domain of ambient water and energy [5,8].

One problem of standard compression algorithms [14, 30] in the IoT domain
are their computational requirements, while lightweight, memory-e�cient ap-
proaches tend to have lower compression potential [38,45,46]. To make matters
worse, IoT applications often rely on small data packets and compress data on
a per packet basis due to memory limitations, which curbs the compression po-
tential of standard compression algorithms [41]. Another limitation of state-of-
the-art approaches is that compression is provided by finding only equal data
chunks. Thus, two chunks will be considered di�erent, if they di�er in a single bit.
Although techniques such as Rabin fingerprinting [32] can be used to split data in
non-uniform chunks (i.e., di�erent sizes) in order to detect similarities, they also
require significant computation and memory resources. All these limitations are
obstructive for delivering energy- and memory-e�cient protocols, in particular

D4.3 Version 1 23 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

16 64 128 256
Chunk length (B)

0

1

2

3

4

5

6

Co
m

pr
es

si
on

 r
at

io

LZW
DEFLATE

DD
GD-vanilla

GD-reduced
GD-dual

GD-vanilla, offset removal
GD-reduced, offset removal

GD-dual, offset removal

Figure 5.1. Compression ratio real-world water meter measurements IoT data set under
di�erent algorithms. The original data size is divided by the compressed data size -
higher is better.

if the nature of the data is not known beforehand. In fact, the compression ratio
for two standard compression algorithms LZW [38] and DEFLATE [14] decreases
dramatically for smaller chunk lengths as shown in Figure 5.1.

A well-known technique to reduce network tra�c is network deduplication [36].
With network deduplication repeating byte sequences are replaced with a
shorter hash value, which is later used to identify the intended content by the
receiving side. However, this technique is typically designed for point-to-point
transmission scenarios with large data chunks, large hashes, local caching op-
erating on files where data is known a priori.

Generalized deduplication (GD) [37] is a recently introduced scheme which re-
duces the cost of storage not only by finding equal data chunks, but also by
finding similar data chunks. Similarities between chunks are identified without
carrying out delta compression to a pool of previous chunks and without rely-
ing on similarity hashes for dynamic chunking as in other lossless compression
schemes. The latter would be impractical for small amount of generated data in
IoT devices. A lossless, multi-source data transmission compression approach
inspired by the concept of GD was proposed in [41] to reduce the amount of
data transmission. Figure 5.1 is showing the potential of GD to outperform data
deduplication (DD) in IoT scenarios, and also to outperform LZW and DEFLATE
for small packet sizes.

In this section we introduce Hermes, a protocol and its corresponding imple-
mentation for data transmission reduction in IoT networks, especially suited for
resource-limited data nodes. Its design principles are inspired and expand the
schemes proposed in [41]. Hermes allows multiple source nodes to share a com-
mon data pool at the sink node, typically a cloud- or edge-based device. All
source node transmissions contribute to growing the data pool. Spatial data
correlations (e.g., similar temperature data at the same time across the same
city, similar smart meter consumption of several households) as well as tempo-
ral correlations (e.g., same electricity readings of house A today as house B a
year ago) across multiple source nodes can be exploited to reduce data trans-
mission and allow for better compression at the sink node. Thus, each device
is benefiting from contributions of other devices in order to reduce their tra�c,
without direct interactions between devices.

D4.3 Version 1 24 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5.2.1. Background on Data Deduplication

Let us define f(.) as a function that associates a (nearly) unique fingerprint to its
input, either using standard hash functions (e.g., SHA-1, SHA-256) or checksums
(e.g., CRC32, MD5). Based on the fingerprint collision probability requirement,
a deployment of Hermes should settle on a specific f(.), but also the size of
the fingerprint in relation to the amount of data transmitted per packet. The
resulting compression gains are partially related (and limited) by the latter, e.g.,
a payload of 40B using a SHA-1 fingerprint of 20B will not compress beyond a
factor of 2.

Data Deduplication (DD) eliminates redundant data by removing copies of re-
peating data chunks. Classic DD divides each piece of data into multiple data
chunks, Ci, and stores each unique data chunk exactly once by distinguishing
repeated data chunks. A fingerprint is then linked to each unique data chunk.
Thus, a piece of data can be represented as a sequence of fingerprints and their
corresponding data chunk. The original piece of data can then be recovered by
searching for the data chunk associated to each fingerprint and concatenate the
data chunks in the right order.

Generalized Deduplication (GD) [37] is a lossless data compression approach,
that eliminates identical as well as similar data chunks. A piece of data is first
split into multiple data chunks, Ci, that are then mapped onto a pair of basis,
bi, and associated deviation, di, by applying a transformation function in the
form of an error-correcting code (ECC). Identical and similar data chunks are
identified by comparing their basis. Each basis bi is stored exactly once gets
assigned a fingerprint f(bi). For simplicity, from here on the notation fbi will be
used instead of f(bi). GD stores a pair fbi and di rather than Ci. It should be
noted that DD can be considered as a special case of GD with di = 0, and bi = Ci.

Data transmission can be reduced with GD in a lossless manner [41]. Source
nodes apply GD onto each data chunk Ci to obtain a pair (bi, di). In order to re-
duce network overhead, the source node first transmits the pair (fbi , di) to the
sink node. The basis bi is then transmitted if and only if it is not available at the
sink node. After receiving the acknowledgement from the sink node, a source
node can erase all data (i.e., chunk, basis and deviation) to free up space in
memory. Without loss of generality this process can be generalized by transmit-
ting a batch of pairs (bi, di) in a single packet. Since all source nodes leverage
the same hash function f(.), each of them is exploiting the set of all bases fin-
gerprints available at the sink node, independent of its origin source node.

A variety of functions can be used to create a mapping from Ci to (bi, di). We rely
on ECC, where Ci is the codeword and, by applying the decoding function of the
ECC, the received message is the basis bi. The deviation di is obtained by taking
the di�erence between the codeword and the error-free codeword. The latter is
obtained by encoding the basis bi using the ECC encoding function.

Hamming codes. Hamming codes [26] are a family of linear ECCs, that can be
used to establish the mapping [29]. Let m be the number of parity bits, the
codeword and the message are of length n = 2m − 1 bits and k = 2m − m − 1
bits, respectively. The corresponding byte-length of the codeword and message
is then obtained by nB = dn

8
e and kB = dk

8
e, respectively. Since Hamming codes

D4.3 Version 1 25 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

can correct single-bit errors, this means that codewords are at most one bit
apart from their error-free codeword. This means that we systematically match
data chunks to one another that di�er in a single bit. The location of this bit
is specified in a syndrome vector of length m bits. With Hamming codes, the
last bit in the last byte is never used due to the length of the codeword which
is n = 2m − 1 bits. Therefore, we consider data chunks of length n + 1 bits to
represent data in bytes. As a result the Hamming transformation is applied on
the first n bits and the remaining bit is left untouched as part of the deviation
(concatenated with the m deviation bits). Thus, the resulting deviation for data
chunks of size n+ 1 bits is m+ 1 bits long.

Reed-Solomon codes. Another family of ECCs that can be used to establish a
mapping [37] are Reed-Solomon codes [39]. Reed-Solomon codes operate on
a block of data treated as a sequence of symbols from a finite field of size q,
Fq. For q = 256, symbols are 8 bits (1 byte) long. The codeword and message
length are nB = q − 1 and kB < nB , respectively. Unlike Hamming code, Reed-
Solomon codes can correct more errors. The error correction capability of the
code is given by t = bnB−kB

2
c. Our implementation is using a short version of the

code [26], where kB < nB < q.

The deviation can be computed by a bitwise XOR of the original data chunk and
the error-free data chunk. However, with Reed-Solomon codes it is not possible
to predict the length of a deviation, but it is possible to derive the maximum
length of the deviation. To this end we consider the covering radius of the code
R(C), which is the maximum Hamming distance any data chunk is apart from its
associated error-free codeword. Thus, we will need a maximum number of bits
for to represent the location and content of non-zero symbols given by R(C) ·
dlog2 nBe bits and R(C) · dlog2 qe bits, respectively. The deviation is the result
of the XOR operation applied to the location and the content of the non-zero
symbols.

Deduplication is used widely to reduce both storage and transmission cost [31].
Asymmetric caching was proposed by Sanadhya et al. [34], where a source node
performs deduplication on the outgoing chunks of data based on its cache con-
tent and the sink node’s feedback, similar to what was originally done with Web
caches in [36]. Timely feedback is sent by the sink node to the source node con-
taining a selected portion of its cache that is most likely going to increase the
probability of matching. [44] describes a deduplication-based file communica-
tion system that leverages manifest (hash values, addresses and sizes of data
chunks) feedback. Each file is split into data chunks and associated hash values
on the source node. In case of a deduplication cache misses, the hash values of
missing data chunks are sent to the sink node for further duplication detection.
Response messages from the sink node include the query information and the
manifests of the chunks that have been matched at the sink node. In [19] a traf-
fic deduplication approach is proposed to merge independent streams of the
same video content on the Internet using a novel overlay network. An enabled
router can then merge a matching video stream, if their identifiers are the same.
We leverage previous works on the domain to propose Hermes, which allows to
reduce data transmission for IoT applications while still o�ering trade-o�s for
saving energy.

D4.3 Version 1 26 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

5.2.2. Hermes architecture

In order to design and deploy a distributed IoT network using Hermes, we assume
the following: (1) all nodes use the same fingerprint length; (2) all GD nodes use
the same transformation configuration; and (3) all nodes use the same chunk
length.

A distributed deployment of Hermes allows for di�erent types of nodes: source,
sink and intermediate nodes. Source nodes inject data into the network, while
sink nodes ingest data without further retransmission. An intermediate node
is any node between a source and a sink node. Each node handles messages
according to its own class: basic, deduplication and generalized deduplication.
Basic nodes serve as a pass-through and do not process data chunks. Dedupli-
cation nodes perform DD on incoming data chunks. Finally, a generalized dedu-
plication node performs GD on incoming data chunks. All nodes respond with
success, acknowledgement or failure messages to communicate their state in
the system. We devise three di�erent communication mechanisms on top of GD
depicted in Figure 5.2.

Sender Receiver Sender Receiver

Known fingerprint New fingerprint

<Ack.>
<Ci>

<Ack.>
(a) DD

<Ack.>
<bi>

<Ack.>
(b) GD-vanilla

<Ack.>
<bi>

<Ack.>
(c) GD-reduced

di

<Ack.>

<Ack.>

(d) GD-dual

di

<Ack.>

���
��� ���

���

���
��� di���

���

di�
′

��
�

′

��
�

′

��
�

′

��
di

� ′
��

� ′
��

�
′

��
�

′

��
� ′

��
� ′

��
�

′

��
�

′

��

� ′
��

� ′
��

�
′

��
�

′

��

< ���. , ��� >< ���. , ��� >.�.�

< ���. , ��� >< ���. , ��� >.�.�

< ���. , ��� >< ���. , ��� >.�.�

< ���. , ��� >< ���. , ��� >.�.�

< ���. , ��� >< ���. , ��� >.�.�

<Ci>

Figure 5.2. Communication mechanisms.

Baseline deduplication (DD): Figure 5.2 (a) presents the baseline mechanism on
top of DD. Each fingerprint corresponds to a unique chunk value (with high prob-
ability given the fingerprint function).

Baseline gen. deduplication (GD-vanilla): A similar mechanism (b) Figure 5.2
which uses the same fingerprint length as for DD can also be applied on top of
GD. With this setup GD-vanilla may incur a slightly larger overhead than DD if an
exact duplicate chunk is already in the sink node, since the transmission of the

D4.3 Version 1 27 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

deviation would be redundant.

Reduced fingerprint gen. deduplication (GD-reduced): Figure 5.2 (c) shows a
variant that compensates the overhead of GD-vanilla. Since the bases for GD
require fewer bits than the data chunks, we can consider a system such that
the length of the fingerprint plus the deviation is equal to the length of the
fingerprint of mechanisms (a) or (b). While this variant removes the transmission
overhead, it increases the probability of collision of the fingerprint.

Dual fingerprint generalised deduplication (GD-dual): Finally, we describe a hy-
brid approach Figure 5.2 (d), which simultaneously transmits the fingerprint of
the data chunk, f ′ci , and of the basis, f ′bi . The fingerprint length is chosen to be
half the length of fci in (a). If a given data chunk is already available at the sink
node, both f ′bi and f ′ci will match. Otherwise, if a similar data chunk matches
to the same basis, f ′bi will match, but not f ′ci . Depending on the availability of
the data chunk and basis, the sink node will either acknowledge the message or
request the missing part.

5.2.3. Evaluation of Hermes

Our experiments are deployed over a switched cluster of 16 Raspberry Pi 4B1

featuring a Raspberry Pi PoE-HAT2 to enable 802.3af Power-over-Ethernet [24].
We deploy a simple network topology where Raspberry Pis are used as source
nodes and are connected to a Dell PowerEdge R330 server acting as sink node.
The Raspberry Pis are powered using PoE by an Ubiquiti Networks UniFi USW-
48P-750 switch and are connected over a Gigabit Ethernet link.

In the micro-benchmark we present the results of running the approaches locally
on a Raspberry Pi 4B and in the macro-benchmark we present the combined
results of running the approaches on the Raspberry Pi 4B cluster.

1 2 4 8 16 32 64 128 256 512 102420484096
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Chunk size [B]

En
er

gy
 [µ

J/
bi

t]

DD
GD

(a) Energy per bit

1 2 4 8 16 32 64 128 256 512 102420484096
10

-1

10
0

10
1

10
2

10
3

Chunk size [B]

C
om

pr
es

si
on

 r
at

io

DD
GD

(b) Compression ratio

1 2 4 8 16 32 64 128 256 512 102420484096
0

10

20

30

40

Chunk size [B]

T
hr

ou
gh

pu
t

[M
bi

t/
s]

DD
GD

(c) Throughput

Figure 5.3. Micro-benchmark on Raspberry Pi 4B.

Micro-benchmark: Figure 5.3 shows the results of running the synthetic data
set on the micro-benchmark. Results in Figure 5.3a show that energy per bit
performance of GD is comparable to DD even considering the added overhead
due to the transformation computation. For chunk sizes of 4B to 8B GD is clearly
more energy-e�cient than DD. GD compresses the data chunks significantly bet-
ter than DD for chunk sizes of 8B and above. For example, with chunks of 64B
GD requires an order of magnitude fewer bits than for DD and for chunks of

1https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
2https://www.raspberrypi.org/products/poe-hat/

D4.3 Version 1 28 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/poe-hat/

4096B it increases to three orders of magnitude. This is due to the large number
of similar chunks matched to the same basis. Finally, our system’s achieves a
maximum throughput at about 35Mbit s−1 for a single thread. To measure the
throughput we have considered all operations: reading the data from memory,
applying the compression algorithm and looking for fingerprints in memory to
check the availability of the data chunk for DD and GD. In a real world scenario,
a source node only needs to apply the compression algorithm and the sink node
will handle fingerprint lookups. Thus, in real deployments we expect a higher
throughput. Furthermore, we could consider using NEON instruction sets in ARM
to speed up processing.

1 2 4 8 16 32 64 128 256 512 102420484096
10

0

10
1

10
2

10
3

10
4

Chunk size [B]

En
er

gy
 [n

J/
bi

t]

raw
DD
GD

(a) Energy per bit

1 2 4 8 16 32 64 128 256 512 102420484096
10

0

10
1

10
2

10
3

10
4

Chunk size [B]

B
yt

es
 s

en
t

[M
iB

]

raw
DD
GD

(b) Network tra�c generated

1 2 4 8 16 32 64 128 256 512 102420484096
0

100

200

300

400

500

600

Chunk size [B]

T
hr

ou
gh

pu
t

[M
bi

t/
s]

raw
DD
GD

(c) Throughput

Figure 5.4. Macro-benchmark on Raspberry Pi 4B cluster.

Macro-benchmark: For the macro-benchmark we evaluate three approaches
methods: raw, DD and GD. By raw, we designate sending raw data chunks and
consider it as our baseline. In our setup we use one thread to handle the net-
working and a second thread to do the necessary transformations and look-ups.
Figure 5.4a shows that for smaller chunks the energy is higher. This is due to the
inaccuracy of the measurement which is twofold: (1) the switch has a low time
resolution to update the PoE status statistics and (2) the short runtime of the
benchmark. As the chunk size (larger than typical IoT ones) increases, so does
the energy for GD due to the computational overhead. Most importantly the net-
work tra�c generated for the di�erent approaches in Figure 5.4b is reduced sig-
nificantly with GD. As seen in the micro-benchmark, the macro-benchmark also
shows a optimal throughput for chunk sizes 4B to 64B. Approaching 1024 kB we
recognize a significant drop in throughput for GD. We assume this is primarily
due to hardware limitations, like exceeding cache limits.

5.3. HEATS Scheduling Policy
HEATS is a task-oriented and energy-aware orchestrator for containerized appli-
cations targeting heterogeneous clusters, first introduced and described in De-
liverable D4.2. HEATS is a prototype scheduler, implemented as a plug-in within
Google’s Kubernetes, allowing users to trade performance for energy require-
ments. It learns the performance and energy features of physical hosts, monitors
the execution of tasks on the hosts and opportunistically migrates them onto
di�erent cluster nodes, to match the customer-required deployment trade-o�s.

In this section we present an evaluation of HEATS’ Scheduling Policy, also de-
scribed in Deliverable D4.2. We first describe our experimental settings and the
synthetic trace used to compare HEATS against the default settings using un-

D4.3 Version 1 29 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

modified Kubernetes. We then compare both schedulers in terms of energy and
resource utilization. We analyse how the user demands (energy/performance
ratios) a�ect the observed performance. Finally, we look at the impact of the
rescheduling frequency on the overall job runtime. The evaluation indicates
that our approach can yield considerable energy savings (up to 8.5%) and only
marginally a�ect the overall runtime of deployed tasks (by at most 7%).

Arch. Cores Frequency TDP Mem.

ARM Cortex-A53 big.LITTLE 4 1.4GHz 5 W 1GiB

AMD Epyc 7281 amd64 32 2.1GHz 155 W 64GiB

Intel Xeon E3-1270 v6 x86 4 3.8GHz 72 W 64GiB

Intel Xeon E5-2683 v4 x86 32 2.1GHz 120 W 128GiB

Table 5.1. Hardware characteristics of our cluster.

Evaluation settings. We deploy and conduct our experiments over a cluster com-
posed of 4 di�erent types of machines (see Table 5.1). Our cluster is composed
of 9 machines, where one is the Kubernetes master, orchestrating the deploy-
ments and the remaining nodes are workers executing the tasks. The 8 worker
nodes consist of one AMD, 3 Intel and 4 ARM machines. The energy consumption
is measured using a LINDY iPower Control 2x6M power distribution unit (PDU)
for the server type machines and PowerSpy devices for the three Raspberry Pi.
The PDU records up-to-date measurements for the active power at a resolution
of 1W and with a precision of 1.5%. We query it up to every second via HTTP.

 0
 50

 100
 150
 200
 250
 300

0 100 200 300 400 500 600R
u

n
n

in
g

 T
a

s
k
s
 (

to
t.

)

time [s]

Figure 5.5. Workload injected by the synthetic trace: tasks arrive in 4 bursts of up to 262
concurrently running containers.

Synthetic trace. We use a synthetic trace to evaluate the gains and trade-o�s
of our system. Figure 5.5 shows the workload injected by this trace. We use
it to deploy multithreaded tasks executing an iterative implementation of the
k-means algorithm in the C programming language. The program, shipped as
statically linked binary for Alpine Linux, executes over a predefined dataset of
65 536 data points along 32 dimensions. Once deployed, the tasks will compute
clusters by splitting the dataset into blocks processed by two worker threads
for a specified maximum number of iterations, chosen randomly in the range of
500 to 1000. The result is stored as file inside the container’s image. In total,
480 k-means jobs are deployed following four bursts over 10 minutes, executed
randomly within a time frame of 150 seconds. The same sequence of pseudo-
random numbers is ensured upon every run of a trace by using a fixed random
seed.

D4.3 Version 1 30 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

 0

 20

 40

 60

 80

 100

0s 200s 400s 600s 800s 1000s

P
e

rc
e

n
ta

g
e

 (
%

)

CPU Load − K8S

Max
75

th

50
th

25
th

Min

 0

 20

 40

 60

 80

 100

0s 200s 400s 600s 800s 1000s

P
e

rc
e

n
ta

g
e

 (
%

)

Memory − K8S

Max
75

th

50
th

25
th

Min

 0

 20

 40

 60

 80

 100

P
e

rc
e

n
ta

g
e

 (
%

)

CPU Load − Heats (H=1)

Max
75

th

50
th

25
th

Min

 0

 20

 40

 60

 80

 100

P
e

rc
e

n
ta

g
e

 (
%

)

Memory − Heats (H=1)

Max
75

th

50
th

25
th

Min

 0

 20

 40

 60

 80

 100

P
e

rc
e

n
ta

g
e

 (
%

)

CPU Load − Heats (H=0)

Max
75

th

50
th

25
th

Min

 0

 20

 40

 60

 80

 100

P
e

rc
e

n
ta

g
e

 (
%

)

Memory − Heats (H=0)

Max
75

th

50
th

25
th

Min

Figure 5.6. CPU and memory usage distribution (percentiles) across all machines in the
cluster. We show these metrics with three di�erent schedulers: HEATS in two configura-
tions (H=0, H=1) on the first and second row, Kubernetes in the third row.

Kubernetes vs. HEATS. First, we compare the CPU load induced on the cluster
by HEATS against the default scheduling policy of Kubernetes. Figure 5.6 shows
these results. We observe how the load patterns are very similar and closely
follow the arrival pattern of the tasks in the trace Figure 5.5). We conclude that
the HEATS scheduler does not deteriorate the lifetime of the processors by ar-
tificially stressing them. Next, we look at the memory usage across the cluster.
Figure 5.6 shows this for two di�erent HEATS configurations, one for performance
(e = 0, p = 1), the other for energy-e�ciency (e = 1,p = 0). The memory load of two
schedulers induce similar patterns.

We compare the energy e�ciency of the default Kubernetes scheduler against
HEATS. Figure 5.7 presents the total runtime and the cumulative energy con-
sumption of the cluster throughout the execution of the trace, including their
idle state requirements. We compare five di�erent approaches: (1) the default
scheduler (k8s), (2) HEATS configured to deploy tasks on the fastest possible
machines, ignoring any energy concerns (e0p1), (3) HEATS trying to be as energy-
e�cient as possible. Moreover, for the sake of comparison, we include the re-
sults achieved by (4) a fixed H value chosen out of our practical experience
(rand, for e = 0.618, p = 0.382) and (5) other variations of the H-value. When com-
pared to the default scheduler (k8s), (2) performs better on an energy cost of
1.5% while (3) performs worse but presents 7.1% of energy savings. Besides, when
compared to each other, (2) performs better while (3) is more energy e�cient.
Finally, for approach (4) we can observe that the runtime as well as the energy
consumption are in between the observations for approach (2) and (3). There-
fore, we can conclude that our observations follow the expected behaviour.

 0

 200

 400

 600

 800

 1000

 1200

k8s 0 0.2 0.4 0.6 0.8 1 rand rall
 0

 200

 400

 600

 800

 1000

R
u

n
ti
m

e
 [

s
]

E
n

e
rg

y
 [

k
J
]

Runtime [s] Energy [kJ]

Figure 5.7. Energy e�ciency and impact on the overall runtime of the trace for several
scheduling policies.
Energy vs. performance weights. The value chosen for the H parameter is of
paramount importance, especially when considering the resulting energy costs

D4.3 Version 1 31 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

and impact on the overall runtime of the jobs. To better understand this as-
pect, we choose 6 di�erent configurations (from 0 to 1, by increments of 0.2), for
di�erent energy/performance ratios, 0 being the least and 1 the most energy-
e�cient versions. We compare the achieved results with a HEATS configuration
that randomly select the value of H, mimicking a customer with no particular
requirements. Figure 5.7 shows our results. For each configuration, we show the
cumulative energy costs (in kJ) and the achieved runtime, respectively on the left
and right vertical bars. We observe how the configurations achieve similar re-
sults, with a sensible deviation only with the less energy e�cient variant. While
these results require further investigations, we believe them to be of practical
interest for end-users. We intend to confirm these by evaluating the same con-
figurations on real-world traces, where the variations of the H parameter might
have more impact.

5.4. Secure Energy-e�cient Computation using SCONE
In LEGaTO, we ensure the confidentiality and integrity of the applications against
potential attacks from the privileged system software (or attackers with priv-
ileged accesses) by developing security mechanisms based Trusted Execution
Environments such as Intel SGX [12]. We extended our toolchain SCONE [7] to
not only enable legacy applications to run inside Intel SGX enclaves but also
provide a key management system to securely transfer the configuration and
secrets (e.g., encryption/decryption keys, certificates) for running these appli-
cations after attesting them [17, 18]. However, there is no free lunch as usual,
running applications with Intel SGX incurs a performance overhead since the
fact that it requires extra computation power to carry out encryption/decryp-
tion operations. In addition, current Intel SGX hardware supports only a limited
memory space (∼ 94MB) for applications running inside enclaves. If applica-
tions allocate more memory than the EPC size limit, it is required to perform en-
crypting data and paging mechanisms which are very costly. Furthermore, this
computation overhead introduces an extra energy consumption when running
these applications.

In LEGaTO, our goals are not only providing security but also achieving energy-
e�ciency for applications running on top of our proposed framework. To bal-
ance and optimize these goals, we designed and implemented our toolchain
SCONE in the way that reduces the overhead. For example, we modified the C
library musl [2] instead of glibc [4] to reduce the trusted computing base size.
We implemented an asynchronous system call interface so that the application
inside the enclave does not need to exit the enclave to execute system calls.
In addition, in SCONE, we handled many system calls inside enclaves without
interacting with the kernel.

To demonstrate the e�ciency of our design, in the context of LEGaTO, we inte-
grated SCONE with Tensorflow — a widely used machine learning framework in
industry to build a secure machine learning framework. We also evaluate the
energy consumption of Tensorflow with SCONE in performing machine learning
computations. We conducted experiments to measure energy consumption of
the machine learning framework in a training model for image classification. We
selected this workload since it can be extended further to train models for med-
ical/ healthcare images in a secure and energy-e�cient manner as a project use

D4.3 Version 1 32 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

case.

We used of a Laptop ThinkPad T480 (Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz,
16GB of memory, running Ubuntu 18.04.1 LTS) and powerstat tool [3] to measure
the energy usage by the SCONE-Tensorflow framework and native Tensorflow
in training Cifar-10 image dataset [21]. The size of this dataset is ∼ 178MB, it
contains a total of 60, 000 pictures with size 32×32 pixel. Each picture belongs to
one of ten classes, which are evenly distributed, making a total of 6, 000 images
per class. We split the dataset into 50, 000 training images and 10, 000 testing
images. We use a simple Convolutional Neural Network (CNN) [1] for the training.

 0

 5

 10

 15

 20

 25

 30

Native Alpine

SCONE EMU
SCONE HW

E
n
g

e
rg

y
 U

sa
g

e
 (

W
a
tt

s/
s)

Figure 5.8. The average of energy consumption of native Tensorflow and Tensorflow with
SCONE in training Cifar10 dataset.

Figure 5.8 shows the average energy consumption of the training using native
Tensorflow running with a Alpine Docker container, with SCONE containers in
both hardware (HW) mode and simulation (EMU) mode. Every second, the native
Tensorflow consumes ∼ 25.88Watts, while Tensorflow with SCONE consumes ∼
23.45Watts and∼ 21.50Watts in EMU mode and HW mode, respectively. However,
note that the native version took only 49 seconds for the training, meanwhile the
SCONE version took 82 seconds in EMU mode and 152 seconds in HW mode. To
further reduce the energy consumption, we need to reduce the processing time
the systems running with SCONE. To achieve that we can tune the configuration
of SCONE which defines how many enclave threads and system threads can be
use for the Tensorflow application.

5.5. OmpSs–SGX Integration
We have integrated the use of Enclaves within OmpSs tasks. Figure 5.9 shows the
compilation flow followed by our approach. The programmer inserts the Enclave
e-calls inside OmpSs tasks, and compiles the application with Intel-provided En-
clave support. Execution of the OmpSs application proceeds normally, starting
outside of the enclave, and some tasks when run, use the resources of the En-
clave, to perform secure execution.

All the experiments described in this section were performed in a CPU server
4-core (2 threads per core) Intel E3-1275 processors and 64 GiB of RAM, 480 GB
storage. The machine runs Ubuntu Linux 16.04.1 LTS. We rely on SGX driver and

D4.3 Version 1 33 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.9. Integration of OmpSs with SGX Enclaves

Figure 5.10. Matrix multiplication application implemented with OmpSs.

SDK, v2.0. We install OmpSs-1 (Mercurium compiler and Nanos++ runtime). The
power consumption is reported by a network connected LINDY iPower Control
2x6M Power Distribution Unit (PDU). The PDU can be queried up to every sec-
ond over an HTTP interface and returns up-to-date measurements for the active
power at a resolution of 1W and with a precision of 1.5

We start our analysis by running a multithreaded matrix multiplication applica-
tion relying on OmpSs for the parallelization. Figure 5.10 bellow shows the char-
acterisation of this application regarding performance. Here we can observe
that more threads yields in better performance regarding duration but worse
performance when it comes to energy consumption. This happens because the
power consumption increases as the utilized number of threads also increase
and the gain in runtime is only fractions of a second.

In Figure 5.11 we observe the same matrix multiplication application but now
integrated with Intel SGX. In the current version of this scenario 100% of the
tasks are executed inside the enclave. As in this example the matrix is very
small, the application does not surpass the EPC limit and therefore we observe
an insignificant overhead due to the added security mechanisms.

D4.3 Version 1 34 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

Figure 5.11. OmpSs matrix multiplication application integrated with SGX.

6. Fault-Tolerance
This Chapter on Fault Tolerance commences with the adaptation of ALYA, the
smart city use case software library, to utilize the Fault Tolerance Interface, the
LEGaTO checkpointing solution in Section 6.1. Finally in Section 6.2, we discuss
ensuring Fault Tolerance within Scone, the LEGaTO security solution whoose se-
curity aspects were discussed in the previous Chapter.

6.1. Alya Integration with FTI
In the previous deliverables D3.2 and D4.2 we discussed several features that we
develop to the FTI multilevel checkpointing library. In order to test the e�cacy
and e�ciency of those features we have integrated the Alya application (relevant
to the Smart City use-case) with FTI to do fast multilevel checkpointing. Alya is an
application capable of simulating the pollution level of a city by simulating the
wind flow in the streets following the 3D structure of the city and the tra�c data
in the streets. Such simulations can take hours and they are prone to failures.
Therefore, it is important to protect them with checkpointing while keeping its
overhead very low.

Alya is a large scientific application with tens of thousands of lines of code in
Fortran90. Therefore, making changes in such a code is not always an easy task
and it tests the simplicity of the API of runtime libraries. We are glad to report
that integrating FTI into Alya was a relatively straight forward task. Only 4 files
needed to be edited and it took only about a hundred lines of code to integrate
both checkpoint and restart with FTI.

1 # i f d e f __FTI__
2 !
3 ! Wr i te r e s t a r t f i l e using FT I
4 !
5 i f (FT I_wr i te_ckpt == 1 _ip) then
6 FTI_Tmp_ptrTime=> i t t i m
7 FTI_Tmp_ptrnPart => npart
8 FTI_Tmp_ptrcuTime => cutim
9 FTI_Tmp_ptrdpthe => dpthe

10 FTI_Tmp_ptrprthe => prthe
11 c a l l FTI_set IDFromStr ing (" i t t i m " , FT I_ id)
12 c a l l FT I_Protec t (FT I_ id , FTI_Tmp_ptrTime , FT I_e r ro r)
13 c a l l FTI_AddVarICP (FTI_ id , FT I_e r ro r)
14
15 c a l l FTI_set IDFromStr ing (" cuTime " , FT I_ id)
16 c a l l FT I_Protec t (FT I_ id , FTI_Tmp_ptrcuTime , FT I_e r ro r)

D4.3 Version 1 35 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

17 c a l l FTI_AddVarICP (FTI_ id , FT I_e r ro r)
18
19 c a l l FTI_set IDFromStr ing (" ptrnPart " , FT I_ id)
20 c a l l FT I_Protec t (FT I_ id , FTI_Tmp_ptrnPart , FT I_e r ro r)
21 c a l l FTI_AddVarICP (FTI_ id , FT I_e r ro r)
22
23 c a l l FTI_set IDFromStr ing (" ptrprthe " , FT I_ id)
24 c a l l FT I_Protec t (FT I_ id , FTI_Tmp_ptrprthe , FT I_e r ro r)
25 c a l l FTI_AddVarICP (FTI_ id , FT I_e r ro r)
26
27 c a l l FTI_set IDFromStr ing (" ptrdpthe " , FT I_ id)
28 c a l l FT I_Protec t (FT I_ id , FTI_Tmp_ptrdpthe , FT I_e r ro r)
29 c a l l FTI_AddVarICP (FTI_ id , FT I_e r ro r)
30 # endif

Listing 6.1. Alya checkpointing with FTI

Listing 6.1 shows the part of the code in charge of checkpointing Alya with FTI.
As we can see it takes less than 30 lines of code. Moreover, we make use of
the Incremental Checkpoint (ICP) feature available to GPUs presented in D3.2.
This is shown in the calls to FTI_AddVarICP which add only the target dataset
into the checkpoint. In this code we can see that we protect a total of 5 datasets
corresponding to a coherent state of the application after restart. We performed
checkpointing Alya with an example test case, we obtained the final result of
the computation, then we re-executed the code with checkpointing, injected
a failure and restarted from the last recorded checkpoint. We let the second
execution finish and compare the results with the failure-free execution. The
results were identical, meaning that the checkpoint is correct and the execution
accurate.

6.2. Fault Tolerance with Scone
Hardware and software fault are a major cause for errors in applications. They
can corrupt the internal application state and, ultimately, they may lead to
crashes, data loss, or to incorrect results of computations. In the LEAGaTo
project, we introduce a compiler-based protection mechanism against software
faults.

Our main focus is transient faults—the faults that change the internal applica-
tion state only once or re-appear intermittently. In contrast to permanent faults
that cause predictable and relatively stable state corruptions, transient faults
are hard to detect because after the fault is over, the application appears to
behave normally. Therefore, defining the source of the fault and mitigating it
becomes extremely di�cult. Such faults might have di�erent reasons, such as
overheating, weardown, manufacturing issues, or even natural radiation.

Transient faults could be also intentionally triggered by malicious actors in order
to compromise the application security. For example, Plundervolt [28] is a recent
attack that performs undervolting of Intel processor that can harm the integrity
and confidentiality of SGX architecture. The root of this attack are bitflips (aka
calculation errors) in the CPU instructions. Murdock et al. [28] show that a bitflip
in the CPU can result in information leakage, unauthorized access, and stolen
secret. Therefore, to ensure both correctness and security of the applications
running on top of the LEGaTO platform, it must be adapted to tolerate these
transient faults.

D4.3 Version 1 36 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

(a) Native
1
2 z = add x , y
3
4
5
6
7 re t z

(b) ILR

z = add x , y
z2 = add x2 , y2
d = cmp neq z , z2
br d , crash

re t z

(c) HAFT
xbegin
z = add x , y
z2 = add x2 , y2
d = cmp neq z , z2
br d , xabort
xend
re t z

Figure 6.1. Our compiler-based protection mechanism transforms original code: (a) repli-
cating original instructions with ILR for fault detection (b) and covering the code in trans-
actions with Tx for fault recovery (c). Green lines highlight instructions inserted by our
compiler using ILR and Tx.

Recently, a few hardening approaches against transient faults have been pro-
posed [9, 15, 23, 33, 35, 42, 43]. However, these approaches still contain at least
one of the following limitations: (1) do not support mutithreaded and/or non-
deterministic applications, (2) requiring to modify the source code of appli-
cations, (3) requiring operating system support, deterministic multi-threading
and/or spare core for redundant executions, (4) providing only fail-stop seman-
tics without providing recovery from faults.

We overcome these issues by applying Hardware-Assisted Fault Tolerance
(HAFT) [22], a compiler-based technique to prevent transient faults at the in-
struction level. It mitigates the faults by duplicating the instructions in a binary
and periodically comparing their execution results. The compiler-based nature
of HAFT allows us to harden applications transparently, without modifying the
code of the application. HAFT neither enforces deterministic execution nor re-
quires spare cores, and thereby, it does not limit the available application par-
allelism. Finally, HAFT achieves high availability by providing fault detection as
well as recovery from faults.

To achieve fault tolerance, our protection mechanism utilizes HAFT to trans-
form an application as follows (see Figure 6.1). First, we apply Instruction Level
Replication (ILR) to the application and we add periodic integrity checks into it.
We apply ILR first by replicating all instructions except control flow ones (Fig-
ure 6.1b). To detect faults, we use ILR to insert a check before returning the
result. A fault is detected if two copies of data di�er then an error is reported by
enforcing application termination. Next, to provide fault recovery, we cover the
whole execution of the application using HTM-based transactions (Figure 6.1c).
Whenever a fault is detected by ILR, the transaction is automatically rolled back
and re-executed. Our mechanism attempts to rerun aborted transactions for a
certain number of times (three times in our current implementation), after that
the code is executed non-transitionally until a new transaction is encountered.
If a fault is detected during the non-transactional part of the code, the ILR-based
mechanism has no choice but terminate the application. Note that the HTM im-
plementation we employed is best-e�ort which also renders HAFT’s recovery
guarantees best-e�ort and it falls back to the fail-stop model in rare cases the
bounded-number of re-executions (three times) is reached. However, our exper-

D4.3 Version 1 37 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

iments show that a clever placement of transactions allows our fault tolerance
mechanism to achieve high availability even in the presence of frequent faults
(see [22]).

Currently, we integrate HAFT with the security toolchain [7]. Our main challenge
is to achieve both security and high availability, even under conditions where
transient faults may occur frequently.

HAFT and Intel SGX are two technologies that complete each other: Intel SGX
ensures integrity on the memory side while HAFT complements it with prevent-
ing bitflips in the CPU. In the memory side, SGX protects the integrity in the
processor-reserved memory (PRM) region by conserving an integrity tree for the
whole PRM. This tree is updated every time when the processor loads the nec-
essary data for an application inside the enclave. If there is a bitflip in the value
retrieved from memory, Memory Encryption Engine (MEE) will detect it and lock
the CPU to prevent further corruption. The motivation for this is that all single
bitflips in memory are corrected by ECC memory and hence, lock downs should
be rare and only happen if the system is under an attack. However, this approach
hinders availability in presence of transient faults outside the main memory,
such as faults in the CPU.

To prevent the CPU lockdown and to transparently tolerate transient faults, we
make HAFT a part of the security toolchain. We take the SCONE libc architecture
and capabilities into consideration. First, we have to ensure our version of HAFT
compatible towards musl libc which SCONE uses at its core. SCONE uses custom
libc, which program will be compiled and linked against. It pools all the system
calls from the application and will execute those with its own threading system.
The configuration of this threading system, in some cases, may improve the per-
formance. The previous version on HAFT is still relying on some configurations
that are only available on glibc. Also, we noticed that although most of LLVM
IR (intermediate representation) is backward compatible, the internals (intrin-
sics, pass functions, etc.) are not. We have rewritten most of the HAFT internals
and adjust HAFT passes to satisfy those requirements and limitations. Also, we
maintain our version of LLVM to be able to maintain the compatibility later on.

D4.3 Version 1 38 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

7. Conclusion
This document describes the work undertaken towards D4.3. One main focus
during the period was on an initial integration of the dataflow substrates. Ac-
cordingly, we have integrated OmpSs with XiTAO, OmpSs with MaxJ and OmpSs
with Dfiant. Additionally, we have also integrated OmpSs with Intel SGX secu-
rity extensions. Our final release will integrate all the dataflow substrates of the
project.

On the compiler side, we developed the data parallel interface for XiTAO, re-
leased the stable version of the Dfiant language and compiler and finalized the
MaxJ compiler toolflow integration. The compiler work on the OmpSs side has
been reported in D3.3 since it is tightly coupled to the runtime.

On energy-e�ciency e�ort, we first introduced the XiTAO energy-aware schedul-
ing approach, followed by the work on energy-e�cient IoT Data Deduplication.
The advance on the HEATS energy scheduler in the period of M20 to M30 was
described next. Finally two orthogonal work that focus on security were de-
scribed, first the energy-e�cient aspects of the secure SCONE framework was
described. Finally the first integration of OmpSs tasking model with Intel SGX
security framework was detailed.

On the fault tolerance side, the integration of the ALYA software framework which
powers the smart city use case with the Fault Tolerance Interface (FTI) check-
pointing library was described. Then, finally fault tolerance aspects of the secure
SCONE framework was described.

D4.3 Version 1 39 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

8. References
[1] Convolutional Neural Network (CNN) Tensorflow Tutorial. https://www.

tensorflow.org/tutorials/images/cnn. Accessed: May, 2020.

[2] Musl Libc. https://www.musl-libc.org/. Accessed: May, 2020.

[3] Powerstat - A Tool To Measure Power Consumption. http://manpages.
ubuntu.com/manpages/xenial/man8/powerstat.8.html. Accessed: May,
2020.

[4] The GNU C Library. https://www.gnu.org/software/libc/. Accessed: May,
2020.

[5] Indian dataset for ambient water and energy. http://iawe.github.io/, 2013.
Accessedon : 03.02.2020.

[6] Farzad Amirjavid, Petros Spachos, Liang Song, and Konstantinos N Platan-
iotis. Network coding in internet of things. In 2016 IEEE 21st Interna-
tional Workshop on Computer Aided Modelling and Design of Communi-
cation Links and Networks (CAMAD), pages 140–145. IEEE, 2016.

[7] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Kee�e, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. SCONE: Secure linux containers with intel SGX. In 2016
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), OSDI ’16, pages 689–703. USENIX Association, 2016.

[8] Nipun Batra, Manoj Gulati, Amarjeet Singh, and Mani B Srivastava. It’s Dif-
ferent: Insights into home energy consumption in India. In Proceedings of
the 5th ACM Workshop on Embedded Systems For Energy-E�cient Buildings,
pages 1–8, 2013.

[9] Diogo Behrens, Marco Serafini, Sergei Arnautov, Flavio P. Junqueira, and
Christof Fetzer. Scalable error isolation for distributed systems. In Pro-
ceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2015.

[10] Philip A Catherwood, David Steele, Mike Little, Stephen Mccomb, and James
McLaughlin. A community-based iot personalized wireless healthcare solu-
tion trial. IEEE journal of translational engineering in health and medicine,
6:1–13, 2018.

[11] Louis Columbus. Roundup of internet of things: Forecasts and market esti-
mates, 2018.

[12] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology
ePrint Archive, 2016(086):1–118, 2016.

D4.3 Version 1 40 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://www.tensorflow.org/tutorials/images/cnn
https://www.tensorflow.org/tutorials/images/cnn
https://www.musl-libc.org/
http://manpages.ubuntu.com/manpages/xenial/man8/powerstat.8.html
http://manpages.ubuntu.com/manpages/xenial/man8/powerstat.8.html
https://www.gnu.org/software/libc/
http://iawe.github.io/

[13] John Rydning David Reinsel, John Gantz. The digitization of the world from
edge to core. https://www.seagate.com/files/www-content/our-story/
trends/files/idc-seagate-dataage-whitepaper.pdf, 2018.

[14] L. Peter Deutsch. Deflate compressed data format specification version 1.3.
RFC 1951, RFC Editor, May 1996. http://www.rfc-editor.org/rfc/rfc1951.txt.

[15] Björn Döbel and Hermann Härtig. Can we put concurrency back into redun-
dant multithreading? In Proceedings of the 14th International Conference
on Embedded Software (EMSOFT), 2014.

[16] Olakunle Elijah, Tharek Abdul Rahman, Igbafe Orikumhi, Chee Yen Leow,
and MHD Nour Hindia. An overview of internet of things (IoT) and data
analytics in agriculture: Benefits and challenges. IEEE Internet of Things
Journal, 5(5):3758–3773, 2018.

[17] Franz Gregor, Wojciech Ozga, Sébastien Vaucher, Rafael Pires, Do Le Quoc,
Sergei Arnautov, André Martin, Valerio Schiavoni, Pascal Felber, and Christof
Fetzer. Trust management as a service: Enabling trusted execution in the
face of byzantine stakeholders. In 2020 50th IEEE/IFIP Int. Conference on
Dependable Systems and Networks (DSN), 2020.

[18] Franz Gregor, Wojciech Ozga, Sébastien Vaucher, Rafael Pires, Do Le Quoc,
Sergei Arnautov, André Martin, Valerio Schiavoni, Pascal Felber, and Christof
Fetzer. Trust management as a service: Enabling trusted execution in the
face of byzantine stakeholders. Technical report, 2020.

[19] Kien A Hua, Ning Jiang, Jason Kuhns, Vaithiyanathan Sundaram, and Cli�
Zou. Redundancy control through tra�c deduplication. In 2015 IEEE Con-
ference on Computer Communications (INFOCOM), pages 10–18. IEEE, 2015.

[20] Abdallah Jarwan, Ayman Sabbah, and Mohamed Ibnkahla. Data transmis-
sion reduction schemes in WSNs for e�cient IoT systems. IEEE Journal on
Selected Areas in Communications, 37(6):1307–1324, 2019.

[21] Alex Krizhevsky, Vinod Nair, and Geo�rey Hinton. The CIFAR-10 dataset. on-
line: http://www. cs. toronto. edu/kriz/cifar. html, 2014.

[22] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. HAFT: hardware-assisted fault tolerance. In Proceedings of the
Eleventh European Conference on Computer Systems (EuroSys), 2016.

[23] Dmitrii Kuvaiskii, Oleksii Oleksenko, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. Elzar: Triple Modular Redundancy using Intel AVX. In pro-
ceedings of the International Conference on Dependable Systems and Net-
works (DSN), 2016.

[24] Galit Mendelson. All you need to know about Power over Ethernet (PoE) and
the IEEE 802.3 af Standard. Internet Citation,[Online] Jun, 2004.

[25] Dutch T Meyer and William J Bolosky. A study of practical deduplication.
ACM Transactions on Storage (TOS), 7(4):14, 2012.

D4.3 Version 1 41 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://www.rfc-editor.org/rfc/rfc1951.txt

[26] Jorge Castiñeira Moreira and Patrick Guy Farrell. Essentials of error-control
coding. John Wiley & Sons, 2006.

[27] Rosario Morello, Claudio De Capua, Gaetano Fulco, and Subhas Chandra
Mukhopadhyay. A smart power meter to monitor energy flow in smart grids:
The role of advanced sensing and IoT in the electric grid of the future. IEEE
Sensors Journal, 17(23):7828–7837, 2017.

[28] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. Plundervolt: Software-based fault injection attacks against
intel sgx. In 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[29] Lars Nielsen, Rasmus Vestergaard, Niloofar Yazdani, Prasad Talasila,
Daniel E Lucani, and Márton Sipos. Alexandria: A proof-of-concept imple-
mentation and evaluation of generalised data deduplication. In Globecom.
IEEE Conference and Exhibition, 2019.

[30] Igor Pavlov. 7-zip. https://www.7-zip.org/. Accessed on: 06.09.2019.

[31] Zahra Pooranian, Kang-Cheng Chen, Chia-Mu Yu, and Mauro Conti. RARE:
Defeating side channels based on data-deduplication in cloud storage. In
IEEE INFOCOM 2018-IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), pages 444–449. IEEE, 2018.

[32] Michael Oser Rabin. Fingerprinting by random polynomials. Technical re-
port, 1981.

[33] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I.
August. SWIFT: Software implemented fault tolerance. In proceedings of
the 3th Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2005.

[34] Shruti Sanadhya, Raghupathy Sivakumar, Kyu-Han Kim, Paul Congdon, Sri-
ram Lakshmanan, and Jatinder Pal Singh. Asymmetric caching: improved
network deduplication for mobile devices. In Proceedings of the 18th an-
nual international conference on Mobile computing and networking, pages
161–172. ACM, 2012.

[35] A. Shye, T. Moseley, V.J. Reddi, J. Blomstedt, and D.A. Connors. Using process-
level redundancy to exploit multiple cores for transient fault tolerance. In
proceedings of the 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), 2007.

[36] Neil T Spring and David Wetherall. A protocol-independent technique for
eliminating redundant network tra�c. ACM SIGCOMM Computer Communi-
cation Review, 30(4):87–95, 2000.

[37] Rasmus Vestergaard, Daniel E Lucani, and Qi Zhang. Generalized deduplica-
tion: Lossless compression for large amounts of small iot data. In European
Wireless Conference. IEEE, 2019.

[38] Terry A. Welch. A technique for high-performance data compression. Com-
puter, (6):8–19, 1984.

D4.3 Version 1 42 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

https://www.7-zip.org/

[39] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their
applications. John Wiley & Sons, 1999.

[40] Niloofar Yazdani and Daniel E Lucani. Revolving codes: High performance
and low overhead network coding. In 2019 IEEE 2nd Wireless Africa Confer-
ence (WAC), pages 1–5. IEEE, 2019.

[41] Niloofar Yazdani and Daniel Enrique Lucani Rötter. Protocols to reduce cps
sensor tra�c using smart indexing and edge computing support. In Ieee
Globecom 2019 Workshop on Edge Computing for Cyber Physical Systems.
IEEE, 2019.

[42] Yun Zhang, Soumyadeep Ghosh, Jialu Huang, Jae W. Lee, Scott A. Mahlke, and
David I. August. Runtime asynchronous fault tolerance via speculation. In
proceedings of the 10th International Symposium on Code Generation and
Optimization (CGO), 2012.

[43] Yun Zhang, Jae W. Lee, Nick P. Johnson, and David I. August. DAFT: Decoupled
acyclic fault tolerance. In proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2010.

[44] Bing Zhou and Jiangtao Wen. E�cient file communication via deduplica-
tion over networks with manifest feedback. IEEE Communications Letters,
18(1):94–97, 2014.

[45] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337–343, May 1977.

[46] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory, 24(5):530–536, 1978.

D4.3 Version 1 43 / 43

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

DX.Y Version 1.0 1 / 4

DX.Y “TITLE OF THE DELIVERABLE”

Version 1.0

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline

Dissemination Level

Nature

Author

Contributors

Reviewers

The LEGaTO project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 780681

	Executive Summary
	Introduction
	Compiler Support and Development Environment
	The OmpSs Compiler
	The XiTAO Data Parallel Interface
	The DFiant Language & Compiler
	Interfaces
	Simplified State Machines
	Synchronous RTL Hardware Description
	Multistage Meta-Programming

	The MaxCompiler Toolflow

	Integration of the Dataflow Programming Substrates
	OmpSs–XiTAO Integration
	OmpSs–DFiant Integration
	Interface Hooks
	Compilation Flow Hook

	OmpSs–Maxeler Integration
	Overview of the Execution Environment
	Runtime Implementation
	Current Tests

	Energy-Efficiency
	The XiTAO Energy Aware Scheduling
	Energy-efficient IoT Data Deduplication
	Background on Data Deduplication
	Hermes architecture
	Evaluation of Hermes

	HEATS Scheduling Policy
	Secure Energy-efficient Computation using SCONE
	OmpSs–SGX Integration

	Fault-Tolerance
	Alya Integration with FTI
	Fault Tolerance with Scone

	Conclusion
	References

