B Ref. Ares(2021)1046119 - 06/02/2021

EGaTl

Low Energy Toolset for
Heterogeneous Computing

D4.4 “REPORT ON ENERGY-EFFICIENCY EVALUATIONS
AND OPTIMIZATIONS FOR ENERGY-EFFICIENT, SECURE,

RESILIENT TASK-BASED PROGRAMMING MODEL AND
COMPILER EXTENSIONS”

Version 2

Document Information

Contract Number 780681

Project Website https://legato-project.eu/

Contractual Deadline 30 November 2020

Dissemination Level Public

Nature Report

Author Marcelo Pasin (UNINE)

Contributors Isabelly Rocha (UNINE), Christian Gottel (UNINE), Valerio

Schiavoni (UNINE), Pascal Felber (UNINE), Gabriel Fernandez
(TUD), Xavier Martorell (BSC), Leonardo Bautista-Gomez (BSC),
Mustafa Abduljabbar (CHALMERS), Oron Port (TECHNION),
Tobias Becker (MAXELER), Alexander Cramb (MAXELER)

Reviewers Madhavan Manivannan (CHALMERS), Daniel Odman (MIS),
Elaheh Malekzadeh (MIS), Chistian von Schultz (MIS), Hans
Salomonsson (MIS)

The LEGaTO project has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Grant Agreement No 780681.

EG aT Dé.ly Version 2 1/

https://legato-project.eu/

Change Log

m Description of Change

1503
1513
1547
1552
1560
1564
1579
1580
1585
1586
1587
1588
1592
1597
1611
1700
171
1712
1713
1718
1726
1759
1766
1822
1836
2018
2039
2048

2020-10-01, File created, Initial draft structure
2020-10-02, Added energy-efficient loT draft

2020-10-27, Added secure service networking in OP-TEE
2020-10-27, Added Fault Tolerance introduction
2020-10-28, Added refs to secure service networking
2020-10-28, Added trusted consensus

2020-10-29, Added smart contract execution in ARM TrustZone
2020-10-29, Added enhanced XiTAO data parallel interface
2020-10-29, Applied corrections to security section
2020-10-29, Included first structure of DFiant evaluation
2020-10-29, Added Initial IDE description

2020-10-29, Added initial version of dfiant integration
2020-11-01, Added Pipetune

2020-11-02, Applied small corrections, reordered sections
2020-11-03, Edited improvements in DFiant section
2020-11-13, Added Mercurium

2020-11-16, Added Alya

2020-11-16, Added reference to D3.4 for OmpSs@cluster
2020-11-16, Added Eclipse Che, updated references
2020-11-16, Added task graph analysis

2020-11-17, Added SGX/OmpSs integration

2020-11-22, Document restructuration, introduction written
2020-11-25, Completed IDE plugin and SGX results
2020-11-26, Completed summary and conclusion
2020-12-01, Applied reviews

2021-02-02, Created second version, fixed references
2021-02-04, Provided main findings in executive summary
2021-02-05, Applied reviewer suggestions

This log reflects actual revision numbers from SVN (version control software used).

EG aT YA Version 2 2/

Index
Executive SUMMANY| o e 7
Introduction|. e 9
Compiler support and Development Environment| 1
31 Task graphanalysis| e 1
311 Projectgoals| 1
1.2 Usefulacceleration information]ouuuuuo... 1
A3 Acquiring programtraces|. 13
E.m TOSTING . « « o v o e e e e e e e 19
A. Limitations and futurework| 22
B2 Enhanced XiTAO Data ParallelInterface] 23
[3.21 The Asynchronous Data ParallelMode| 24
22 The Synchronous Data Parallel Mode| 25
2.3 Evaluation of the Alyasolver] 25
.3 0mpSs Integration with SGX| e 27
E.z. IDEPIUGIN o 31
B.41 Eclipseplugins|. 31
.42 Eclipse Cheintegration| 31
.43 Working with OmpSs in Eclipse Che| 33
.44 Conan-based installations| 33
i Dataflowengines|. 36
61 DFiant Evaluation|. e 36
410 Programmability| 36
41.2 Performance and Other Metrics|. o it 38
[.2 Tntegration With OmpPSS| vttt e e e e e e e e 38
5 Energy-Efficiency| 39
[51 Energy-efficient IoT Applications| 39
511 Networking in ARM TrUSTZONE]o oov e e 40
1.2 Executing Smart Contracts in ARM TrustZone|)
|§.1.3 Achievements| e A
[5.2 _Energy Efficiency Through Deep Learning Parameter Tuning Lt
.................................. 45
|5.2.2 Implementation]ttt 46
[5.2.3 Evaluation] 46
[6 Securityand Fault-Tolerance| 52
[61_ Trusted Consensus in Untrusted ENVIFONMENTS] . . « « v v v v v v v e e e e e e e 52
611 Architecture] e 52
[612 Overview] 52
6.1. ReSULES| o e e e e e e 54
[6.2 FPGA Fault Tolerance|. o i 57
7 ConcluSIONn|. e e 59
8 References|. e 60

EG aT YA Version 2 3/

List of Figures

3.1 Tiled n-body program graph for a trivial problemsize| 12

.2 Tiled n-body graph at a larger (though still trivial) problemsize| 12

.3 A set of tasks suitable for collective acceleration. 13

.4, Aloopflow graph forthe VGG16 CNN.f 14

.5 Diagram of Mercurium analysis infrastructure.| 14

.6 Diagram of main loop detectionprocess| 17

7 Illustration of vertex merging.| 18

8 TasK asSINMENT AItNESS TUNCLION] « « « v v v e e e e e e e e e e e e e 18

[3.9 Analyzed task graph; 32768 bodies, 512x512 tiles, 4 iterations]. 20
[310 VGG16 neural network structure]. 21

A1 VGG16 loop flow graph afteranalysis). 21
a2 Analyzed task graph, choleksy decomposition, 2048x2048 matrix with tile size 256x256.| 22

13 The basic structure of a DAG based program Iinserting SPMD code regions|. 24

A4 XITAO data parallelmodes| 25

A5 The basic structure of a DAG based program inserting SPMD code regions|. 25

16 Intel SGX applications with OmpSs support.). 27

a7 Evaluatlon results for Cholesky Kernel application.| 28

a8 Evaluatlon results for Dot Product application.] 29

319 Evaluation results for matrix multiplication application| 29
3.20 Evaluation results for STREAM application (barrier based version)| 30
21_Evaluation results for STREAM application (dependency based version).|. 31

22 IDE plugin showing the OmpSs_dependences hints offered to the programmer| . . . 32

.23 IDE plugin showing the OpenMP task hints oﬁered to the programmer|. 32

.24, Workspace selection In Ecl|pse Che with OmpSs@FPGA avallable[. 33

[3.25 Dotproduct project in OmpSs@FPGA open with Eclipse Che| 34

4.1 Example of a script in DFiant that runs simulation in GHDL|. 37

4,2 Example of DFiant bit-accurate compile-time error indications in the editor] 37

1.3 ALU manual pipelining example and running compiled code inspection| 38
4.4, ALU inspected code printout. Notice the addition of balancing pipe stage| 38
|&.5 Compilation environment showing the integration of the DFiant kernels onto the |

[OompSstoolchain| e 40
[51__EXecution FlOW INSIAE OP-TEE|. . « « v v v v e e e e e e e e e e e e I
5.2 Interaction of iperfTZ’s components in the client-server model|. 41

5.3 TCP network throughput measurements for 128 KiB buffersizes| 42

5.4 Energy consumption during TCP network throughput measurements. Bit rates on |
[thex-axisaregivenin logarithmtobase2) 42
[5.5_ ArchiteCture of TZAFABRIC« o v oo oottt e e e e e e 42
5.6 Throug_hput-latency, transactions and transaction energy for read/write invoca- |

[tions. Top row are read transactions, bottom row are write transactions, 43
[5.7 Energy consumption of nodes in the Hyperledger Fabric network. Top row are read |
[transactions, bottom row are write transactions) Lt
5.8 Hyperparametertuning flow.. e 45

5.9 ACCUIACY CONVEIGENCE). & v v v v e e e e e e e e e et e e e e e et e e e 47
5.0 Tra|n|ng trial time convergencel 48
511 Evaluation ofP|peTunesaccuracy, performance and energy consumption for Type- |
[TandType-llJobs] 48
[512 Evaluation of PipeTune’s accuracy, performance and energy consumption for Type- |
[ITJObS) . . o o 48

EG aT Di.ly Version 2 4l

[513 Average response time for Type-1 and Type-II Jobs considered independently and |
[alltogether] 50
[514 Average response time for Type-lllJobs.) 50
|61 RPMB x fresh and worn out TPM NVRAM monotonic counter - Latency distribution |
L forreadsand writes| 55
6.2 Trusted Replication Latency - retrieve performance for large queries|. 56
6.3 Trusted Replication Latency - update performance for large queries| 57
6., Trusted Replication Latency - Insertion performance| 57

EG aT YA Version 2 5/

List of Tables

3.1 Summary of task cost evaluation methods.| 16
2__Summary of tool inputs/outputs.] 19

.3 The parameters input by user to the XiTAO’s asynchronous data parallel interface|[. 25

[3.4 Time in seconds for the different executions of Alya’ssolver]. 26
lta Comparing various RTL codes with equivalent DFiant codes in LoCs The DFiant im- |
plementation Is usually much more concisef. 39

|51 Workloads used for experiments. 46

EG aT Dty Version 2 6/

1. Executive Summary

This report is the final and last delivery of the work produced in LEGaTO’s Work Package 4, re-
garding the toolchain frontend. As it was in all previous cases, it is issued at the same time as
Deliverable D3.4 on the backend, and includes many components that complement the ones pre-
sented there. This deliverable historically complements previous deliverables SD1 (Chapter 4),
Ds4.2 and D4.3. To avoid overlap between this and previous documents, we choose to highlight
only those components that are novel or have been considerably updated since Ds4.3. Overall,
this deliverable covers work that has been done during the past 6 months, from M30 until M36.
The text of this deliverable reports the status of the LEGATO tool chain frontend (work package
4) and is organized in four main technical chapters.

Chapter[3] Compiler Support and Development Environment
Chapterlg Integration of the Dataflow Programming Substrates
Chapter|s| Energy-Efficiency

Chapter|6] Fault-Tolerance and Security

Chapter[3|starts with Section [3.1} which provides information about the work done on the com-
piler front-end as well as the programming environment. Its first section presents the task graph
analysis developed when considering the integration of Maxeler’'s MaxCompiler into LEGaTO's
stack. We describe how we brought together the Maxeler MaxCompiler and OmpSs, having
OmpSs’ task-based programming model to assist the dataflow development process, reducing
efforts to develop and to optimise dataflow accelerators for the Maxeler platform. We have
implemented a tool to automatically detect static sub-graphs from applications annotated in
OmpSs, and show them to the programmer to easily identify parts of the algorithm that should
be mapped to Maxeler's DFE accelerator. We demostrate that it is possible in many cases to
analyse and reduce large task graphs, getting useful insights into program structure.

Section[3.2 presents the work done on enhancing XiTAO's data parallel interface, explaining how
it distinguishes synchronous and asynchronous modes of execution. We enhance the XiTAO
data-parallel interface to support both synchronous and asynchronous modes of operation, ex-
posing XiTAO features of LEGATO'’s tool-chain backend, via loop-parallelism. Due to its pop-
ularity in fork-join parallel programming models, the synchronous data-parallel interface pro-
vides energy-efficient execution enabled by dynamic moldability and task-based power profiling
(demonstrated in D3.4) for a wide range of applications, especially those the adopt kernels from
the Machine Learning and Numerical Science fields. We were able to demonstrate the energy
efficiency of the enhanced version using a C++ port of the Alya code (from the Smart City use
case). There, we compare to a highly optimized work-stealing scheduler and achieve more than
50% better energy-efficiency while still achieving faster time-to-solution on the heterogeneous
Nvidia TX2 CPU architecture.

A performance evaluation of OmpSs when running tasks inside SGX enclaves appears in Sec-
tion We have achieved secure task execution within an OmpSs application, by means of
using Intel SGX Enclaves as the secure framework. The Enclave interface is very similar to the
OmpSs task interface, so mapping tasks onto it is straightforward. With this platform, we have
been able to measure the performance penalty that the secure infrastructure introduces to se-
cure the data, with and without encryption, and we have observed that a good way to overcome
this penalty is by using task-level parallelism.

Section concludes Chapter [3} presenting the last evolution of the Integrated Development
Environment. As presented in previous deliverables, we developed a set of Eclipse IDE Plugins
with the goal to provide programming hints to the user. The add-on provides context-based help
regarding the OmpSs/OpenMP directives and clauses, assisting on the decision about what is
the most appropriate expression for the heterogenous parallelism. We have also achieved the
integration of the OmpSs development environment as a Docker container within Eclipse CHE.

EG aT Diy.y Version 2 71

Our work regarding dataflow engines appears in Chapter[4} which in this deliverable is entirely
dedicated to present our work with DFiant, the dataflow hardware description language that de-
couples functionality from implementation developed in LEGaTO. Our main contribution focuses
on the DFiant evaluation and the significant improvements in programmability of FPGA devices
without sacrificing performance or fine-grain hardware generation control. Our empirical find-
ings show that DFiant designs usually save between 50% to 70% in lines of code compared to
the RTL baseline.

Chapter |5 highlights the progress done in energy-efficiency, in two sections. All research results
described in this chapter were published and presented as peer-reviewed papers in conferences.

We present a study of 10T applications running in trusted environments, with special attention
given to power consumption when using Arm’s TrustZone in Section[5.1] We developed two tools,
a network perfomance evaluation tool for secure services, and an extension of Hyperledger
Fabric for running (blockchain) smart contracts, both using OP-TEE and exploiting ARM TrustZone.
The performance tool is capable of identifying bottlenecks in the network performance of secure
services, for which we were able to identify and quantify the energy and performance overheads.
Using the smart contract tool, we have shown that it is possible on ARM hardware to reduce
the energy cost by one order of magnitude compared to state-of-the-art hardware used with
Hyperledger Fabric. The improved energy consumption comes at the cost of performance, which
is also a result of the additional security when running the service in OP-TEE or ARM TrustZone
in general.

Section.2]is dedicated to a study of adapting system- and hyperparameters in machine learning
jobs in order to be be more energy-efficient. We designed and implemented a novel parameter
tuning algorithm for deep learning clusters which takes system parameters into account. Our
work resulted in an open-source tool that leverages the repetitive behaviour of tuning jobs for
deep neural networks, to quickly find the best set of parameters. The tool is modular which
makes it easy to swap between similarity functions and underlying search algorithms. We eval-
uated 7 different real-world datasets from different domains, including text classification and
image recognition. When compared against state-of-the-art deep neural network tuning sys-
tems, our tool shows evidence that we can greatly reduce tuning and training time (27% and 41%
respectively) without accuracy loss.

The final technical part is Chapter 6} with two sections. Section[6.1contains a thorough study on
how to implement trusted consensus using SGX enclaves, including an evaluation with a repli-
cated database. Trusted consensus is a rollback-resistant, integrity preserving data service that
aims to provide data replication in untrusted cloud environments. It combines hardware en-
forced anti-rollback mechanisms over a customized protocol that executes database requests
and replicates the changes. To address attacks that involve abusing the protocol majority bal-
ance, we use a single-instance protocol that leverages hardware monotonic counters to ensure
that attacks are much harder to achieve. Our results demonstrated that the associated over-
heads are limited and scale harmoniously.

Section ﬂconcludes our last technical chapter, with a brief reference of LEGaTO’s Fault Toler-
ant Interface to use with FPGAs, as it has been previously described in Deliverable D4.3. Also, in
Deliverable D5.3 we presented the work of Alya at large scale, a LEGaTO use case in a smart city
simulation that sometimes runs for long hours on the Marenostrum supercomputer in Barcelona.
To mitigate the high probability of failures during Alya jobs, we apply checkpoint/restart as de-
scribed in Deliverable D3.3, substantially decreasing the amount of re-computation required
upon a failure. We created a tool capable of checkpointing heterogeneous applications running
on CPU and GPU clusters. Our tool uses multiple storage systems to implement multilevel check-
pointing with parallel device-to-host data streams when writing into reliable storage. With FTI,
we have enabled fault tolerance for heterogeneous applications while substantially decreas-
ing the checkpoint and recovery time. Our work around FTI and Alya was also published and
presented as a peer-reviewed paper in a conference.

EG aT (YA Version 2 8/

2. Introduction

LEGaTO is a Horizon 2020 research and innovation action to develop advanced techniques to
make it easier to build large performance-hungry applications. This deliverable marks the end of
the work done in LEGaTO’s Work Package WPz, named “Tool-chain front-end”. WP4 was composed
of seven tasks, each task producing research outputs on a different aspect being developed in
WPs4. The tasks are listed below.

- Task 4.1: Definition / Design (M1-9)

- Task 4.2: Programming Model features for energy efficiency (M1-36)
- Task 4.3: IDE plugin (M7-36)

« Task 4.4: Compiler support (M7-30)

- Task 4.5: High-level Synthesis for FPGA (M1-36)

- Task 4.6: Task-based kernel identification/DFE mapping (M7-36)

« Task 4.7: Fault Tolerance and Security (M1-36)

WP was intended to develop techniques for high-productivity, energy-efficient, high-performance
heterogeneous programming with added security and fault-tolerance. Heterogeneity is obtained
using computers that incorporate central processing units (CPUs), field-programmable gate ar-
rays (FPGAs), and graphics processing units (GPUs). Security is obtained by using novel hardware
extensions that allow for building trusted execution environments. Fault-tolerance is managed
using standard techniques, tailored for the original environment developed in the project.

Requirements for the techniques developed in WP4 (energy efficiency, security, fault-tolerance,
performace) may compete against each other, so we often strived for finding adequate trade-
offs. To achieve application development under such constraints, a great number of components
has been developed, allowing to map applications written in a high-level task-based dataflow
language onto the heterogeneous platform. Each component presents different ways of tackling
different requirements, working at different levels, and often obtaining trade-offs between two
or more aspects. Finally, the components in WP4 are developed in tight integration with the work
done in WP3. Many times, deliverables from WP3 refer to work done in WP4, and vice-versa. In the
paragraphs that follow, we recap the deliverable history of WP4, then we present the structure
for this document.

Deliverable D4.1 (Definition/design of front-end toolbox) was integrated in Chapter 4 of Superde-
liverable SD1 [34l. It corresponded to the work done in Task 4.1 (Definition/Design), ended at
month 9. SD1 contains a comprehensive set of functionalities designed to be offered as front-
end tools for programming applications. A software architecture was introduced with all main
aspects on which LEGaTO is focused, along with a number of extensions, then proposed to be
implemented in the infrastructure management to support the execution of the proposed task
model.

Deliverable D4.2 (First release of energy-efficient, secure, resilient task-based programming model
and compiler extensions) was delivered at month 20. It presented OmpSs, the execution and pro-
gramming model for the tool chain, with a description of the resource sharing between different
runtimes. For programmability, we proposed the development of OpenMP and OmpSs support
into Eclipse and we developed our first plugins. We extended the OmpSs compiler to support
autoVivado, to compile OmpSs applications which target Xilinx FPGAs. We also developed and
assessed a checkpoint-restart fault-toloerant library to be integrated inside the runtime system.
We analysed energy-efficiency and security trade-offs, with different trusted hardware support,
and produced the design of a task-based scheduler called HEATS. To understand the overhead
generated by trusted execution environments, we also developed a monitoring framework. Fi-
nally, we designed and started implementing DFiant, a Scala-embedded hardware description
language that leverages dataflow semantics to decouple functionality from implementation con-
straints.

EG aT YA Version 2 9/

Deliverable D4.3 (Final release of energy-efficient, secure, resilient task-based programming
model and compiler extensions, including FPGA toolchain) was delivered at month 30. There,
we presented our work to upgrade OmpSs to support FPGAs, including autoAIT (to support Xil-
inx ZCU102) and Vivado HLS 2019.3. We offered a DAG-friendly data-parallel interface for XiTAO
runtime system, leveraging its energy-efficient scheduling features on heterogeneous platforms.
We also added a Maxeler DFE architecture plugin to the OmpSs runtime, to support spawning
of tasks to Maxeler hardware. We extended the compiler to obtain the communication weights
and computation load, helping to decide the proper mapping of DFE kernels. Our first experi-
ments using OmpSs with SGX are also presented, with new tools for monitoring and for adding
fault-tolerance to legacy applications inside SGX enclaves. The IDE plug-in also evolved, to sup-
port new releases of Eclipse CHE. We presented a stable version for DFiant, with composable
port addition, a simplified finite state machine syntax and constraint tags for injecting RTL-like
semantics, along with is first OmpSs integration. We proposed a novel data deduplication tech-
nique that allows for saving energy of 10T devices. Finally, we have rewritten the core of the
smart city use case to use our checkpointing library.

This is Deliverable D4.4, the last deliverable of Work Package WP4. Here, we detail the research
progress we made in the last few months of LEGaTO concerning front-end tools for productivity,
security, fault-tolerance and energy efficiency. Mimicking previous deliverables, D4.4 contains
four technical chapters. Each of these chapters is presented below.

Chapter(compiler support and development environment) is split into four sections. In Sec-
tion 3.1 we present how we automatically identify static sub-graphs in OmpSs’ task graph for
mapping them to Maxeler’s dataflow engines and we demonstrate it with three different algo-
rithms: n-body simulation, a neural network, and Cholesky matrix decomposition. We describe
the enhancements provided on top of the XiTAO data parallel interface in Section With
this interface, applications can leverage the XiTAO runtime for energy efficiency and interfer-
ence awareness, and resource moldability. The section concludes with an evaluation of the Alya
solver with different programming models including OpenMP, OmpSs, and XiTAO. Section[3.3|de-
scribes our efforts on integrating secure tasks into OmpSs using SGX and, finally, Section
presents the last improvements made with the IDE plugin.

Chapter [4] contains two sections concerning DFiant dataflow engines. Section [4.1 presents an
evaluation of DFiant, focusing on programmability of FPGA devices. Section[s.2]shows how DFiant
kernels are integrated with OmpSs in a FPGA project.

Chapter presents two recent research results on energy efficiency. Sectionpresents an anal-
ysis of the energy-efficiency of two distributed, hardware-secured services specifically designed
for 10T devices. Section[5.2[presents a novel study about how to tune machine learning models’
hyperparameters in order to trade performance for energy efficiency.

Chapter [g]is the last chapter, containing our last months’ contributions on security and fault-
tolerance. Section [6.1| presents recent research results on hardware-secure computing with an
implementation of a distributed consensus algorithm in an untrusted environment. Section
contains a summary of the progress of fault-tolerant checkpointing for FPGAs, and refers to the
work reported in D4.3 (of Work Package WP3).

EG aT Di.y Version 2 10 /

3. Compiler support and Development Environment

3.1. Task graph analysis

Here we consider integration of the Maxeler MaxCompiler into the LEGATO tool stack. As de-
scribed in deliverable D2.1, Maxeler uses a dataflow oriented model to describe accelerators for
FPGA-based Dataflow Engines (DFE), and the compiler uses a Java-based meta-language Max]
to describe the compute kernels. Since developing and optimising a dataflow accelerator in
Max) can involve a considerable amount of effort, we want to leverage the task-based program-
ming model in OmpSs to assist the dataflow development process. The task-graph generated
by OmpSs is conceptually very suitable for being translated into a dataflow model. Therefore,
we want to automatically identify static sub-graphs in the task graph generated from OmpSs
and translate them into a form that helps the developer to identify parts of the algorithm that
should be mapped to the DFE accelerator. This includes analysis of the compute to 1/0 ratio of
the subgraphs to be accelerated.

The process for developing an accelerator for any given program begins with an understanding
of the algorithm to be accelerated. The next step is the identification of compute intensive
portions of code, then finally the transfer of those code sections to the accelerator. This can be
a straightforward process when the implementation is well understood, however in real world
scenarios it is often the task of a developer to optimize an existing implementation for which
complete information is not available.

341.1. Project goals

The goal of the task graph analysis project is to investigate automated analysis of task-based
program traces. The aim being to aid developers by providing the insight they need to make good
acceleration decisions for existing applications. This step of gaining insight into the program is
crucial, especially for FPGAs because of high implementation effort and large time requirements
for generating FPGA bitstreams.

For trivial examples, tools like graphviz can easily render visual representations of task graphs
as in Figure For programs at realistic problem sizes though, these graphs quickly become
unintelligible as in Figure 3.2}

3.1.2. Useful acceleration information

One important metric for accelerating code is the ratio between task cost and the size of the
working set. Typically the best candidates for acceleration are pieces of code that involve large
amounts of processing and small volumes of data. To determine these quantities, the task cost
in terms of primitive operations as well as the size of task inputs and outputs need to be instru-
mented and made available for processing. In the case of FPGA accelerators it is also important
to know the types of operations taking place in tasks, as the hardware cost of implementation
can vary significantly between operation types.

In a task graph, nodes represent tasks and edges represent dependencies between tasks due to
shared variables or other synchronization. It is important to capture this structural information
in the analysis as it is possible for a collection of tasks to represent a better candidate for
acceleration than any individual task. Figure contains a graph with several tasks, none of
which are ideal acceleration candidates by themselves. Collectively however, they make a better
candidate for acceleration than any individual task.

Collected information needs to be displayed to the user in a meaningful way. One representation
that suits this purpose is the loop-flow graph (see Figure . A Loop-flow graph is a form of task
graph where iterative processes are folded away to hide redundant information. Nodes in the
graph represent operations within the code and are optionally annotated with an iteration count
to indicate that the process runs multiple times. Edges are annotated with the quantity of data
moving between tasks. The graph may be partitioned to indicate which tasks take place on
the accelerator and which take place on the CPU. In the case of the graph in Figure tasks
above the dotted line (convolution, rectifier linear operator and spatial pooling steps) are on

EG aT YA Version 2 1 /

User functions:

. int main(int, char**)@nbody smol.c@106@

Zero accelerations

Tile acceleration computation

(§ J

Integration step

Edge types:

— True dependence | Taskwait | Barrier

e Anti-dependence

Figure 3.1. Tiled n-body program graph for a trivial problem size.

Figure 3.2. Tiled n-body graph at a larger (though still trivial) problem size.

EG aT D44 Version 2 12 /

the accelerator, whereas the fully connected layers are on the CPU. This assignment of tasks was

determined by manual analysis.

1MB

10M operations
100MB

@erat ions

100MB

1MB

Figure 3.3. A set of tasks suitable for collective acceleration.

34.3. Acquiring program traces

Data exfiltration was achieved using the instrumentation capabilities of the nanox runtime. The
nanox instrumentation APl was expanded to include events for task 1/O ranges and operation
counts and a new instrumentation plugin was implemented to export this data in a machine
readable format for further processing.

3.1.31. Mercurium analysis infrastructure

To facilitate the evaluation of task cost and enumeration of operations, a pass was implemented
using the Mercurium analysis infrastructure to compute expressions for the number of opera-
tions in each task. Mercurium is a source-to-source compiler for C/C++ and FORTRAN with sup-
port for parallel programming models like OpenMP and OmpSs. Itis formed by a series of phases
that analyze and transform the code, which is later passed to a native compiler to generate the
final binary. The picture in Figure[3.5/shows a high level overview of the compiler pipeline.

Mercurium implements a series of phases devoted to source code analysis, particularly of Open-
MP/OmpSs codes. The infrastructure is built on top of a Parallel Control Flow Graph (PCFG) that
represents the flow of the source code as well as the parallelism and other semantics expressed
by OpenMP/OmpSs directives. Based on this representation, Mercurium offers different classical
data-flow analysis, including use-definition chains and reaching definitions, and optimizations,
like constant propagation and strength reduction, all adapted to consider the parallel semantics
of OpenMP/OmpSs. Finally, more complex analysis like induction variables analysis and scalar
evolution are available.

3.1.3.2. Estimating task cost

With the objective of estimating the cost of relevant regions of code, a set of features have been
included in the Mercurium compiler. These are the following:

« Anew analysis phase that computes the cost of OmpSs tasks and loops in terms of number
of operations. The operations are organized based on the type of the operands (i.e., integer,
float or double) and the type of the operation (i.e., addition/subtraction, multiplication or
division), resulting in a total of 9 groups.

- A new transformation phase that instruments the user code with the information of the
counters computed by the analysis. This code is executed at runtime generating per region
events containing the operation counts.

EG aT YA Version 2 13 /

image

150,528 elements x2 ‘
A X5 I
Convolution

15,346,630,656 operations per image

(1 Mul, 1 Add)

1

13,547,520 elements 7,426,048 elements

I x2

RelU
1,705,181,184 operations per image
(Max(0,x))

6,021,120 elements

Pooling
1,505,280 operations per image
Max(a,b,c,d)

25,088 elements

4,096 elements
|

Fully Connected
106,856,448 operations per image
(1 Mul, 1 Add)

[
1,000 elements

(EGaT0

Figure 3.4. A loopflow graph for the VGG16 CNN.

Input source code

CfC+fFartran
Y e el
C/C++/Fortran OpenlP ntermt-h late
frontend frontend phases
| 4
: Data-flow Code
: analyses e transformations
|
1
]
e e e e e e e
OpeniP
binary

User libraries

I userfiles

Compiler components
[externzitoois
] funtime libraries

14,710,464 elements

,505,280 elements

Lowering

| SMP || Accelerator

I_Lmkm.p, compilation
T
OpenMP RTL

|

C/C++/Fortran
codegen

v

Mative

1 1
t - - Embedding —-————

Figure 3.5. Diagram of Mercurium analysis infrastructure.

D44

Version 2

106,856,448 elements

14 /62

The new analysis phase performs a top-down inside-out traversal of the user code using the
PCFG. This means that, although the code is traversed sequentially, inner levels are computed
before outer levels, e.g., in a two-level nested loop, the counters of the inner loop are computed
first, and then aggregated accordingly to the values of the variables of the outer loop. The main
computations occur in the following points:

+ Loops: the number of operations of the region inside the loop is multiplied by the number
of iterations of the loop. In case the number of iterations depends on another induction
variable, then this computation is delayed until the different values of the outer induction
variable are known.

- Conditional statements: unless the condition of the statement can be decided to be true
or false, the number of operations of each branch is computed, and then just the maximum
of the two is used as an approximation.

« Tasks: the number of operations of the task region is computed.

« Function calls: when the code of the function code is accessible, the compiler performs
inter-procedural analysis; otherwise, the function is also annotated as a different type of
operation, so the number of times this function is called can also be computed.

The analysis does not modify the user code in any way. However, the information gathered about
the counters is stored in the PCFG structure, particularly in the nodes corresponding to loops
and tasks, for later use. Furthermore, the results are also detailed in a report available to the
user.

The new transformation phase provided in Mercurium uses the data included in the PCFG during
the analysis phase to instrument the user code using the API provided by Nanos to that end. The
instrumentation occurs in two different places:

+ The code associated with the task constructs include a new event at the end with the
expression that computes the number of operations of each type.

« Loops include instrumentation before and after the loop, so the region associated with
the counter can be recognized at runtime. In this case, if the compiler has not been able
to compute the number of iterations, instrumentation is added to compute it at run-time
(unlike for tasks, this cannot be automatically done at run-time because loops are not
recognized by the Nanos runtime systems as tasks are.

In addition to the Mercurium analysis pass, two other methods for assessing task complexity
were also implemented. One uses execution duration of the task as an approximation for task
cost, and another uses processor hardware counters via the PAPI library to estimate operation
counts. Support and accuracy for these methods varies and is summarised in Table[3.1}

34.3.3. Acquiring data ranges

The nanox runtime supports several different models for task dependencies as separate plug-
ins that can be activated at runtime. To capture memory ranges associated with dependencies,
the cregions (contiguous regions) plugin was used. To determine the data size of a given de-
pendency, start addresses and end addresses were compared to determine the total size of the
data.

34.3.4. Task graph analysis

Gathered data is processed using a set of analysis tools. These tools are responsible for pro-
cessing the graph and delivering data to the user in a readable format. Before discussing the
analysis process in detail it is important to define some terminology:

EG aT YA Version 2 15 /

Method Support Accuracy

Execution time High - Always available. Low - Many variables not accounted
for (CPU cache, processor perfor-
mance, compiler optimisations). No
way to distinguish between operation

types.
Hardware counters Medium - Counter sup- | Medium - Variances due to compiler
port varies between pro- | optimisation and non-task code being
cessors. counted. Some operation types can be

distinguished.

Mercurium analysis | Low - Difficult to achieve | High - Results are invariant between
pass robust operation for arbi- | runs and accurately represent opera-
trary programs tions as expressed in the source code.

Table 3.1. Summary of task cost evaluation methods.

- Task instance: Refers to an instance of a task. There may be many instances of any given
task on a graph.

- Task: Refers to the source code associated with a task instance.

- Vertex: Vertices on a task graph represent task instances. For the purposes of this section,
the term can be considered synonymous with the term “task instance”.

- Dependence: An edge on the graph, indicative of data transfer or other synchronization
event between task instances.

The first step of the analysis involves detecting program “main loop” and averaging loop iter-
ations. This process works by finding vertices that represent “taskwait” synchronization events
and dividing the graph into segments delimited by these vertices. A vector of “structural finger-
prints” is then computed for these segments by recursively hashing edges and vertices within
each segment. The main loop is then identified by searching for repeating patterns in the struc-
tural fingerprint vector. Finally main loop iterations are averaged together by averaging the
performance metrics associated with each vertex. In the event that main loop identification is
not successful, the analysis treats the entire graph as a single iteration (see Figure .

Further folding of the graph is achieved by merging vertices and edges under certain conditions.
The first condition is for “adjacent” vertices. A set of vertices are considered adjacent if they
share a dependency with a previous task, but not with each other. The second condition is for
“consecutive” vertices. Two vertices are considered consecutive if they are identical and one
is dependent upon the other. Vertices can only be merged if they represent instances of the
same task and have the same number of inputs and outputs of the same size. During merging,
task performance information including execution time and operation counts are averaged and
the vertex is assigned an iteration count equal to the sum of the iteration counts of the origi-
nal vertices. Edges are also inspected and merged if the memory ranges attached to them are
contiguous. This merging process is applied iteratively to the graph until no further merging
opportunities are present.

The final stage of the analysis is the assignment of task code either to the accelerator or to the
CPU. This is achieved by a brute-force algorithm which iteratively evaluates the effectiveness
of all possible assignments. The evaluation process for any given assignment uses operation
counts and graph structure to determine the amount of compute on both the CPU and the accel-
erator, as well as the amount of CPU-accelerator communication. These quantities are evaluated
using a fitness function (see Figure[3.8), and the assignment with the highest fitness is selected.
If no assignment scores better than zero, the assignment algorithm assigns the entire task code
to the CPU.

EG aT YA Version 2 16 /

Input graph (many iterations)

Segment hashes

cleeee80

Combined graph

7112alce A

cleeee80

7112alce

e e
J

Figure 3.6. Diagram of main loop detection process.

EG aT YA Version 2 7 /

Consecutive
Adjacent l Combined
l . l
A l A

/ \ Bl x2
Y
1 B2 B1+B2 /2
\ / B2
C

B

|

) pe—
O -

Figure 3.7. Illustration of vertex merging.

Lo jf 22 > 10
f(OCL?OCabiO) = {bio ve

0, otherwise

where:

o, = Operations on the accelerator.
o. = Operations on the CPU.
b;, = CPU-accelerator I/O in bytes.

Figure 3.8. Task assignment fitness function.

EG aT YA Version 2 18 /

Representation Inputs Outputs

Task graph Task graph, ompss task | Task graph, total operation count, task
graph summary (csv)

Loop flow graph Loop flow graph, task | Loop flow graph, total operation
graph count, task summary (csv), dot file

Table 3.2. Summary of tool inputs/outputs.

31.3.5. Output and tool structure

The tools define two representations, a task graph and a loop-flow graph. Each representation
can be serialized or deserialized as json. Each representation has an associated executable into
which files may be passed to perform conversions between representations and/or output anal-
ysis information. Table 3.2 contains a summary of possible analyses and input/output formats
for each representation. Some output formats also accept optional parameters. For example,
the dot file output representation may optionally include task assignments (shown as blue task
outlines) or compute to 1/0 ratio (shown as red-green gradient coloring on task nodes). During
development emphasis was placed on modularity and extensibility to enable the tools to be
expanded and repurposed for future projects.

31.4. Testing

To test the tools, task-based implementations of three different algorithms were chosen as case
studies. These were; n-body simulation, the vgg16 neural network and cholesky matrix decom-
position.

31.44. N-body gravitation simulation

The term N-body refers to a class of algorithms for modeling the motion of sets of particles,
typically under the influence of mutual forces. For this test case an n-body gravitational sim-
ulation was implemented whereby particles move relative to one another under the influence
of mutual gravitation. In each timestep particle positions and velocities are computed based
on their relative positions and velocities from the previous timestep. Each timestep is divided
into two tasks; the force/acceleration computation stage, which involves computing the accel-
eration applied to each body as a result of gravitational interaction with each other body, and
the integration step which involves updating body positions and velocities with respect to the
computed forces/accelerations.

The acceleration computation is by far the most computationally expensive step, with computa-
tional complexity O(N?) where N is the number of particles. The integration step is inexpensive
by comparison with computational complexity O(N). A common strategy when accelerating
workloads like this is tiling the acceleration computation loop so that body positions for a tile
fit within the processor cache. In this task-based implementation, each tile is given its own task.
The graph in Figure is the result of analyzing the task graph generated by a 32768 particle
simulation with a tile size of 512x512 bodies running for four timesteps.

For this test algorithm, task cost was estimated using the mercurium analysis framework to
acquire operation counts on a per-operation-type basis. It can be seen that the majority of
operations take place in the acceleration computation step (see Figure . The assignment
generated by the tools suggests computing particle accelerations on the accelerator and inte-
gration on the CPU. This is reasonable within a single iteration but in practice the researcher is
unlikely to be interested in seeing the results at the end of every timestep. In this case it would
become favourable to execute all stages of the computation on the accelerator and only fetch
results once the simulation is complete. Unfortunately, nanox is not currently capable of relating
data volumes and address ranges to variable names. This means that it isn't possible to identify
which memory regions are outputs when the analysis tools are run. Because of this, the tools
assume that all output memory ranges at the end of the loop are required outputs. Additionally,

EG aT YA Version 2 19 /

each body-to-body interaction includes a call to the C standard library square root operation
that is not included in the operation count total due to it being implemented in a library.

Key:

|] Compute to IO ratio

[] Accelerator task
a CPU Task

384kBf512kB

Figure 3.9. Analyzed task graph; 32768 bodies, 512x512 tiles, 4 iterations.

3.1.4.2. Image recognition using VGG16

The VGG16 neural network is a convolutional neural network for image classification [37]. The
computation involves passing data through multiple layers of computation each with differing
characteristics (see Figure . There are three major data items required to process an image.
Image and layer output state, weights and biases. Convolutional layers have a large amount of
network state, but a small number of weights and biases as the same values are used for each
kernel. By contrast, fully connected layers have a large number of weights but a comparatively
small amount of network state. For this implementation of the network, layer computations
were chunked into blocks and separate buffers were allocated for the results of each layer.

The assignment algorithm suggests computing the results of convolutional layers on the accel-
erator and fully connected layers on the CPU. This assignment makes sense as the large quantity
of weight data associated with fully connected layers makes them unfavourable. This aligns well
with the manual algorithm partitioning discussed earlier (see Figure .

EG aT A Version 2 20 /

224x224x3 224 x224x64

112 x 112 x 128

i kb 7x7x512

1x1x4096 1x1x 1000
= —T——|—1—]

(=7 convolution+ReLU
7 max pooling

1 fully nected+ReLU
1 softmax

Figure 3.10. VGG16 neural network structure.

o

_ () D
Wlmmmm_“

©) o
D D
o

Figure 3.11. VGG16 loop flow graph after analysis.

@ D4ty Version 2

21 /2]

341.4.3. Cholesky matrix decomposition

Cholesky decomposition is a decomposition of a hermitian positive definite matrix into the prod-
uct of a lower triangular matrix and its conjugate transpose. This process has applications in
numerical methods and solving systems of linear equations.

Figure 3.12. Analyzed task graph, choleksy decomposition, 2048x2048 matrix with tile size 256x256.

Unlike VGG16 or n-body examples, the task-based Cholesky matrix decomposition algorithm
exhibits a less regular graph structure. Because of this the analysis phase fails to reduce the
complexity of the graph appreciably and graphs generated at larger problem sizes still quickly
become unintelligible.

3.1.5. Limitations and future work
3.1.51. Task cost estimation

The static analysis of the source code can provide useful information regarding the operation
count, while avoiding any overhead as required by dynamic instrumentation techniques. How-
ever it has the following limitations:

+ The Mercurium compiler only allows the analysis of one translation unit at a time. This
means that, for a given file, the compiler can only access the code in that file and any
included header. Inter-procedural analysis is then limited to one translation unit.

- The capability to compute the exact number of operations in a given region depends on the
knowledge the compiler can gather about the variables involved in the region. Particularly,
the compiler requires knowledge about:

- Variables determining the iteration space of the loops: when these are not known,
the accurate expression can still be generated but its exact value will only be known
at run-time.

- Variables involved in conditional statements: when these are not known, then only
an approximation of the total number of operations can be provided.

 No loop unrolling is performed to obtain the operation count. As a consequence, there are
limitations on the type of code that can be analyzed successfully by this phase. Particularly,
only loops in the canonical form for (init-expr; test-expr; incr-expr) structured-block are
accepted.

- Currently, conditional statements (e.g., if-else statement) are just approximated, i.e., the
number of operations of the statement is always computed to the maximum number of
operations of any of the possible branches, unless the condition always evaluates to the
same value and it is known at compile-time.

EG aT Dagy Version 2 22 /

- Several features of advanced versions of C++ are not supported in the analysis, e.g., lambda
expressions, range-based loops and concurrency.

As part of future work, the plan is to:

+ Provide a more accurate solution for conditional statements.
- Support more complex loops like while-loops.

- Accept information from the user regarding functions that are called in the source code
which code is not available at compile time. This could be in the form of annotations
associated with the source code, or a separate template-file with the function headers and
the expected number of operations of each type.

34.5.2. Task graph analysis

The analysis tool has shown the capacity to reduce the redundancy of plain task graphs consid-
erably, with excellent results when applied to data parallel algorithms with regular task graphs
like the n-body and vgg16. However testing exposes a number of limitations:

« Irregular graphs like those produced by cholesky decomposition are handled poorly by
the analysis. Investigation of improved methods for detecting repetitive structures in the
graph both for main loop detection and folding of less regular graph structures remains
as future work.

« Variable names are not attached to data ranges. This prevents the possibility of suggest-
ing/analyzing more complex strategies like loop unrolling, a common strategy on FPGAs to
optimise 1/0 and memory bandwidth. The lack of this feature is primarily due to limita-
tions in the nanox instrumentation APl and could conceivably be solved through use of an
alternative instrumentation technique, or by further extending the API.

Main loop detection is error prone and expects main loops to be delimited by synchronisa-
tion events. This may not be the case for all algorithms and generally cannot be assumed.
More general ways to detect repetitive graph structures remain as future work.

Output graphs sometimes have confusing layouts due to graphviz's dot layout engine. Cur-
rently the dot file output for the loop flow graph exercises no control over the layout of
vertices during rendering. By manually adding rank allocations for vertices, it may be pos-
sible to further improve the readability of output graphs. This also remains as future work.

- Instrumented programs have to be executed with a single worker thread because of the
manner in which the nanox runtime handles dependencies between tasks. This limits the
usage of the tools in their current state to the instrumentation of programs at fairly small
problem sizes. Solving this issue remains as future work.

« Concurrent and commutative sections are currently not supported by the nanox instru-
mentation plugin developed for the project. Supporting these features of the programming
model remains as future work.

In conclusion, the proof of concept analysis techniques implemented for this project show that
it is possible in many cases to analyze/reduce large task graphs and achieve useful insights into
program structure, but that substantial work remains to be done to develop the technique to a
point where it is usable for a wide variety of input programs.

3.2. Enhanced XiTAO Data Parallel Interface

In this deliverable, we explain the enhancements provided on top of the XiTAO data parallel in-
terface. As highlighted previously in D4.3, XiTAO incorporates modern C++ compiler technology
to deliver a DAG-friendly data parallel interface. With this interface, many applications that con-
sist of parallel Single Program Multiple Data (SPMD) regions can leverage the backend features
offered by the XiTAO RT including energy efficiency and interference awareness depicted by WP3.

EG aT YA Version 2 23 /

OV ONOUN~NWN

-

// tao_width: XiTAO specific resource hint

// i: the loop counter

// loop_start: loop iterator start

// loop_end: loop iterator end

// scheduling_type: XiTAO scheduler type (e.g. dynamic)
// block_length: the chunk size for each task

auto dataparallel_nodes = __xitao_async_data_parallel_region
(tao_width, i, loop_start, loop_end,
scheduling_type, block_length,
for (int j = 0; j < N; j++) {
C[il[i] = e;
for (int k = 0; k < N; k++)
Clill3] += A[i][k] = BLKI[J];

)i
for(int i = @; i < dataparallel_nodes.size(); ++i) {

previous_node[i]->make_edge(dataparallel_nodes[i]);
}

for(int i = @; i < dataparallel_nodes.size(); ++i) {
next_node[i]->make_edge(dataparallel_nodes[i]);
}

Figure 3.13. The basic structure of a DAG based program inserting SPMD code regions

The interface makes it possible to indicate a resource hint that the runtime can use to aggregate
resource to a specific task within the loop or a set of tasks (resource moldability). Here, we make
the distinction between the asynchronous and synchronous modes of executions.

The data-parallel frontend depicted here resides on top of the XiTAO Energy Efficient Scheduler
(EAS), which is evaluated in Deliverable D3.4. EAS is an energy efficient work stealing runtimes
targeting modern platforms with asymmetric cores and cluster-based DVFS (e.g. NVIDIA Jetson
TX2), as well as symmetric homogeneous platforms. The scheduler estimates the energy con-
sumption on a per-task level and performs task placement decisions for each task to minimize
the energy consumption. Deliverable D3.4 evaluates several alternatives in the design of the
XiTAQ's energy efficient scheduler and has the following characteristics:

1. Task type-awareness that is important to select the most efficient resources for each task
instance;

2. Utilizing an exponential backoff sleep strategy, which helps reduce energy waste from work
stealing loops with minimal impact on performance;

3. Adaptive task moldability that can further improve energy efficiency by reducing resource
over-subscription and inter-task interference.

3.2:1. The Asynchronous Data Parallel Mode

This mode arises from the assumption that programs can be expressed as DAGs with different
granularities. One of the main motivations behind the inclusion of async data parallel nodes
is the fact that task loops can then be seamlessly inserted into task graphs (see Figure ,
and will benefit from reducing the overhead of fork-join programming approaches and achieve
energy-efficiency from the runtime backend. The snippet on Figure3:13|shows how a loop parallel
region, for example, can be part of a full DAG structure using the XiTAO programming interface.
Also, Table 3.3 highlights the interface parameters. The capability of nesting loop parallel nodes
in a DAG workflow has been supported. Also, a few explanatory benchmarks adopted from Ro-

EG aT Di.ly Version 2 24 /

- ———— - ——————

Fine grain
dependencies

Data-Parallel

I
1
1
:
Region | 0.9 10..19
:
1
1
1
1
)

- ——

I
1
Data-Parallel :
R
egion : 10..19 1 Chunk size = 10
Chunk size = 10
N /
Fine gram
dependencies
\
N Sync /'
N — e e e e e e e = -
(a) Asynchronous mode with fine-grain dependencies (b) Synchronous mode that is analogous to fork-join models

Figure 3.14. XiTAO data parallel modes

__Xitao_sync_data_parallel_region (tao_width, i, loop_start,
loop_end, scheduling_type,
block_length,

for (int j = @; j < N; j++) {
Clillil
for (int k = @; k < N; k++) C[il[j] += A[1i]1[k] = B[kI[j];
}
)i

Figure 3.15. The basic structure of a DAG based program inserting SPMD code regions

dinia Benchmark Suite and Barcelona OpenMP Task Suite have been developed and will soon
appear in the XiTAO online repository.

Parameter Usage

width The XiTAO resource hint to be given to the loop tasks.

iter The loop index/iterator.

end The loop end.

sched The scheduling options (e.g., static, dynamic, energy-aware, etc.)
block_size | Governs the granularity of task creation.

Table 3.3. The parameters input by user to the XiTAO'’s asynchronous data parallel interface

3.2.2. The Synchronous Data Parallel Mode

The sync data parallel mode is semantically equivalent to OpenMP/OmpSs taskloops, and mainly
supported for backward compatibility of legacy codes. In this mode, operation happens in 3
steps, shown in Figure . First, the DAG execution of previous nodes is synced. Second,
the loop is divided into chunks of tasks according to the block_length parameter. Third, an
implicit wait is inserted to pause the execution until all loop tasks have finished. Listing 315
shows an example of such usage.

3.2.3. Evaluation of the Alya solver

The most time consuming part of Alya code is the solution of the Poisson equation. The proce-
dure consists in solving a linear system of equations in each time integration step. The matrix of
the system is a laplacian, and has as many rows as the number of cells used in the discretization
of the computational domain. For the smart city use case, the matrix remains constant during
the full simulation, therefore the pre-processing operations are negligible. The iterative solvers
are the best option to solve the system due to its low memory footprint when compared with di-
rect solvers. The Preconditioned Conjugate Gradient (PCG) is the iterative solver most commonly
used in Alya. The solver is mainly composed of three algebraic operations: vector operations
(axpy and dot) and the sparse matrix vector multiplication (spmv). The operations are memory

EG aT YA Version 2 25 /

bounded, and its implementation consist of a loop of the size of rows of the matrix. This config-
uration enables using directive-based models or run-times that automatically parallelize that
loop. Four implementations of the solver have been evaluated using different components of
the LEGaTO tool-chain.

+ OpenMP: GCC version 7.4, loop-based, using parallel for directives

- OpenMP taskloop: GCC version 7.4, using parallel taskloop directives
+ OmpSs-2: OmpSs-2 version 2020.09, using tasking

+ XiTAO: xitao vo.8-alpha

- CUDA: version 10.0 is used, axpy and dot operations are linked with the cublas library.

The experiments have been performed on the NVIDIA Xavier nodes provided by Bielefeld. The
solver was executed on matrix systems obtained from Alya execution using unstructured meshes
with sizes ranging from 100,000 to 1,600,000 rows. In these matrices, the number of non-zero
elements per row is less than five and oddly distributed due to the unstructured meshes. The
sequential execution has been included as a baseline. Parallel executions have been obtained
using 8 cores for the SMP models, and CUDA 10.0 for the execution on the GPU. The execution
time of the solver for the different models is shown in Table[3.4

Matrix | Sequential | OpenMP | OmpSs | Xitao | OpenMP | CUDA
Size taskloop

50,000 0.47 013. 0.27 0.35 0.64 0417
100,000 111 0.24 0.48 0.69 1.40 0.29
200,000 2.38 0.48 0.85 141 2.77 0.42
400,000 7.63 1.32 2.05 4.32 1043 1.07
800,000 17.64 314 4.22 9.98 22.85 248
1,600,000 48.35 8.56 1.04 | 2730 61.03 5.64

Table 3.4. Time in seconds for the different executions of Alya’s solver.

The best cases for each matrix size are highlighted in bold. Note that for matrix sizes with less
than 200,000 rows, the OpenMP version is the most efficient implementation with a speedup
of 3.6 times with respect to the sequential version. On the other hand, from 200,000 rows and
above, the CUDA implementation is the most efficient one with a speedup of up to 8.5 times
with respect to the sequential case. CUDA implementation does not perform well with small
matrix sizes due to two factors: i) the GPU requires of certain occupancy in order to exploit the
maximum memory bandwidth that is hard to achieve with the sparsity pattern of our matrices,
and ii) the GPU time includes memory transfers of the right hand side (r.h.s) and resulting vectors
from host to device, the relative weight of those transfers is higher in the smaller cases. Anyhow,
the workload in the final smart cities use case ranges from 1,000,000 to 4,000,000 per node,
being in the range in which the GPU implementation is the most efficient one.

Among the CPU-only executions, OpenMP loop-based implementation is the most efficient code
for all the matrix sizes. In the range of the smart city use case, OpenMP outperforms OmpSs
by a 28% and XiTAO by a 318%. The drop of performance with OmpSs tasking is caused by the
lower data locality achieved, compared to OpenMP for loops. Additionally, it is important to
note that the XiTAO data-parallel interface is semantically similar to the OpenMP taskloop, and
it loses some performance to achieve energy efficiency as was shown in D3.4. Hence, a more fair
comparison with XiTAO loops would be considering the taskloop implementation of OpenMP,
since XiTAO uses a similar strategy to associate threads with task DAGs. For the largest case,
XiTAO is 2.2 times faster than OpenMP taskloop based implementation, and is consistently faster
in the other cases.

EG aT Déty Version 2 26 /6]

{ OMPpSs@SGX
Application

Programmer adapts
tasks to SGX

/

Mercurium -

Source code with calls

to Nanos++ runtime e
Compile for SGX]

Nanos

A
¢ Enclave support "
T e Enclave—

GCC +kernels

05 (Linux) + A
iSGX driver \/

’ i

v S

OmpSs.elf |smp

Figure 3.16. Intel SGX applications with OmpSs support.

3.3. OmpSs Integration with SGX

Figure[3.16]depicts the proposed approach by showing how the combination of OmpSs program-
ming model with Intel SGX can be performed. First, the programmer has to adapt the tasks to
SGX which means defining the tasks as C/C++ functions which will be declared and implemented
using the Enclave’s interface. Then, the parallelization pragmas can be added to the secure ap-
plication in the same way as it is done for non-secure application except that all the pragmas
have to be placed outside the Enclave. For instance, if the user wants to annotate a function
declared inside the Enclave then the pragmas have to be placed on the function call instead
of declaration. Finally, the annotated code is compiled using the Mercurium compiler and the
Nanos++ runtime schedules the application tasks on the platform.

We evaluated the proposed approach by means of four benchmarks consisting of cholesky fac-
torization, dot product, matrix multiplication and two versions of the STREAM benchmark. We
analyze each of these applications in the following 3 versions: a pure OmpSs implementation,
an implementation combining OmpSs and SGX, and a third one adding encryption on top of the
OmpSs and SGX combination. All the applications used here take as input a matrix and the par-
allelization is done based on the blocks of this input matrix. Considering that, the size of a given
input matrix indirectly defines the graph size. i.e., the number of total tasks spawned. Moreover,
the block size in which we split the matrix defines the input size of each task as the larger a given
block is the more data has to be processes by a given task. We then evaluate how each version
performs when we vary the matrix and block size as well the scheduling algorithm. Finally, We
also vary the number of threads to see how the applications scale for multiple threads.

We deploy our experiments on a cluster of 4 quad-socket Intel E3-1275 CPU processors with 8
cores per CPU, 64 GiB of RAM and 480 GB SSD drives. The machine runs Ubuntu Linux 20.04.1 LTS
on a switched 1 Gbps network. Power consumptions are reported by a network connected LINDY
iPower Control 2x6M Power Distribution Unit (PDU), which we query up to every second over an
HTTP interface to fetch up-to-date measurements for the active power at a resolution of 1W and
1.5% precision.

Cholesky Kernel.

The Cholesky Kernel is a decomposition of a Hermitian, positive-definite matrix into the product
of a lower triangular matrix and its conjugate transpose. The kernel uses four different linear
algorithms: potrf, trsm, gemm and syrk. The way we parallelize the code is by annotating these
kernel functions so that each call in the previous loop becomes the instantiation of a task. The

EG aT YA Version 2 27 /

size [J] 256 [l 1024 [l 2048 block [256 [Jl] 1024 [l 204

L1l A

ompss SgX—t encrypled ompss SgX— encrypled

IS

w

duration
N
duration

N
@

threads [l [l 2l +[]e scheduler [or [l w

ompss SgX— encrypled ompss SgX— encrypled

IS

w
w

duration
o

duration
N

Figure 3.17. Evaluation results for Cholesky Kernel application.

original application used these algorithms from the MKL or OpenBLAS linear algebra libraries,
and, in order to have the algorithms available inside the enclave without dependences on Linux
services we have provided the four algorithms in source code inside the application itself.

Figure shows the comparison of the results of the application. Comparing results when
varying the matrix size (plot on the top-left), we can observe that the overhead when using
SGX and SGX with encryption is noticeable (7x slowdown). Nevertheless encryption does not
introduce overhead compared to the non-encrypted version. Regarding the influence of the
block size, results (plot in the top-right) show that when the block size if larger, the overhead is
also larger. Regarding the number of threads (plot in the top-right), it shows that the execution
time scales better when using SGX and SGX with encryption, due to the fact that each task has
more work to do, and thus, the overhead of the runtime is reduced in comparison. Finally, the
OmpSs scheduling policy (plot on the bottom-right) has no impact on the performance. Both
breadth-first and work-first (Cilk-like policy) give the same performance.

Dot Product

The dot product is an algebraic operation that takes two equal-length sequences of numbers
and returns a single number obtained by multiplying corresponding entries and then summing
those products. A common implementation of this operation accumulates the result of each
iteration on a single variable. This kind of operation is called reduction, and it is a common
pattern in scientific and mathematical applications.

There are several ways to parallelize operations that compute a reduction but in our implemen-
tation we use a vector to store intermediate accumulations. This means that tasks operate on
a given position of the vector and the parallelism is determined by the vector length. Finally,
when all the tasks are completed then the contents of the vector are summed up.

Figure 318 shows the experimental results for the 3 versions of this application. In this case we
observe an overhead between 2x and 3x on the SGX and SGX Encryption versions when compared
with pure OmpSs implementations. Regarding the scalability of applications, for the parameters
values chosen the input size does not seem to impact performance. When it comes to number of
threads, for this given application the optimal solution is 2 threads which is at least 15% faster

EG aT Dagy Version 2 28 /

size [J] 200000 [l 200000 [l 400000 biock [l 200000 [l 200000 [Jl] 400000

09- 09
<
2
06- g os
5
3
037 J ” .
0.0+ 00

duration

ompss sox sgx-encrypted ompss sax sgx-encrypted
threads [l [20 <[] scheduler [Jllof [l
w2
00
< <
5 5
H goe
3 3
05
03
ompss sox sgx-encrypted ompss sax sgx-encrypted
Figure 3.18. Evaluation results for Dot Product application.
size [s [: [> biock [Jlls [s [l =
5
.
5
< <
8 2
g g
3 3
_J 2
.
ompss sox sgx-encrypted ompss sox sgx-encrypted
threacs [l [-« [C]¢ scheduler [Jllof [l

duration
duration

sgx-encrypted sgx-encrypted

04
04
| .i| | .
00- 00
ompss sax ompss sgx

Figure 3.19. Evaluation results for matrix multiplication application.

than the sequential version. However, with 4 and 8 threads the performance starts to decrease
again and this can be due to the overhead added when compared with the size of tasks.

Matrix Multiplication

The matrix multiplication application receives matrix A and matrix B as input, performs the mul-

EG aT YA Version 2 29 /

wveacs [I I+ I+

Figure 3.20. Evaluation results for STREAM application (barrier based version).

tiplication calculations between A and B, and outputs the result in a third matrix C. Figure 3:19|
shows the experimental results for the 3 versions of this application. In this context, we observe
at least 1.5x to 2x overhead for the SGX and SGX plus encryption versions when compared to
the pure OmpSs version, respectively. However, all three applications scale well when a smaller
input sizes is used and more threads are added. In fact, the both SGX versions present at least
2x improvement when using multiple threads when compared with their respective sequential
versions while the pure OmpSs version only present up to 25% improvement. With this we can
conclude that although there is a clear trade-off between performance and security, we can
easily minimize the extra cost of adding a security layer by combining SGX with OmpSs.

STREAM benchmark

The STREAM benchmark [6] is a simple synthetic benchmark program that measures sustainable
memory bandwidth (in GB/s) and the corresponding computation rate for simple vector kernel.
We present the following two versions of this application: one that inserts barriers and another
without barriers. The behavior of the version with barriers resembles the OpenMP version, where
the different functions (e.g., Copy, Scale) are executed one after another for the whole array. In
the version without barriers, functions that operate on one part of the array are interleaved and
the OmpSs runtime keeps the correctness by means of the detection of data-dependences.

Figure 3.20] and Figure [3.21 show the experimental results of the STREAM application with and
without barriers, respectively. Independent of the versions, we can observe that STREAM based
on the dependency graph performs better than STREAM using barriers. For the SGX versions
this observation becomes even more evident as the overhead of running all the tasks inside
the enclave, encrypting/decrypting the input/output data becomes adds an extra cost. Another
difference between the versions is that the block size does not seem to play a role in the barrier
based version while the dependency based version performs better with larger block sizes. This
behavior is consistently observed in all 3 variations of this version. Finally, another observation
is that the encryption overhead is much larger in the barrier version than in the dependency
version. In fact, in the dependency one we do not observe a significant variation between the
SGX versions with and without encryption.

EG aT Dasy Version 2 30 /

sze oMMl ook [l ¢ [l

Figure 3.21. Evaluation results for STREAM application (dependency based version).

3.4. IDE Plugin

The integration of OmpSs within Eclipse consists of the development of the Eclipse plugins to
display coding hints for the programmer, the OmpSs@FPGA installation within Eclipse Che, and
the installation with the Conan Package Manager.

3.44. Eclipse plugins

Figure[3.22]shows a sample hint provided by the OmpSs eclipse plugin. Depending on the initial
directive inserted, the plugin informs the programmer about how to complete it, through valid
clauses and their short manual explanation. The plugin for OmpSs includes all OmpSs directives
and clauses, and the Xilinx HLS directives and clauses, which offers an integrated view.

We have also developed a plugin for OpenMP. Figure 3.23|shows the OpenMP example, on which
the programmer is presented with the information about the final clause on the task directive,
just before the programmer selects it for insertion in the code.

The Eclipse plugins for OmpSs are provided in the repository: https://github.com/bsc-pm-ompss-
at-fpga/eclipse-ompss.

3.4.2. Eclipse Che integration

We have built a tool based on Eclipse Che [5], and Docker to offer the service to compile OmpSs
applications for a specific target environment.

3.4.241. Initialization of the environment

When initializing the environment, a docker container is created, with an Ubuntu installation,
the cross compilers for the Arm and Aarch64 architectures, the Eclipse Che service, and with the
OmpSs tools:

« Mercurium compiler

« Ait tool

« Nanos++ runtime library

+ Extrae instrumentation library

EG aT Dagy Version 2 31 /

= wvoid cholesky(float a[N]J[N]) {

for (int jj = @;
for (int j

j < N; 3j +=85) {
35 3 < MIN(N, J+BS); J++) {

#pragma oss task in(a[j+1:§5+B5-1][@:5-1], a[f][@:3-1]) inout(a[§+1:§j+B5-1][3])
for (int i =9+ 1; i ¢ 5 + BS - 1; ++i) {
for(int k = @; k<ji+tk)
a[i1[3] = a[i][3] - a[i][k] * a[j1[k];

#pragma oss task in(a[jj+BS:N-1][@:j-1], a[j][@:j-1]) incut(a[jj+BS:N-1][j])
for(int i=99+B5; i<l i++){
for(int k=0; k<j; k++)
ali1[3] = al11[3] - a[4il[k] * a[51[k];

#pragma oss task in(a[§][@:3-1]) inout(a[§1[i])
for(int k=8; k<j; k++)
a[11[9] = a[§1[4] - a[31[k] * a[f1[k];

#pragma oss task i

#pragma oss task in dependence-typelvarl, var2 ..)
for(int i= j 41 T in
a[i][j] =a in The generated task will be a dependent task of all previously
inout generated sibling tasks that reference at least one of the
#pragma oss task in list items in an im, or an inout clause.
for(int i= j3+8
a[i][3] = a Sintaxis:
#pragma oss task depen incut([VAR], [VAR2]...)
} where VAR can be:
3 A single variable: inout(a)
An element of an array: inouta[3D
A range of elements of an array. inout{a[0:32+il)
}
& a[j1[3] = sars(Press ‘Ctrl=Space’ to show Default Propasals || S@mPles:

Figure 3.22. IDE plugin showing the OmpSs dependences hints offered to the programmer

eclipse-workspace - prueba/src/matmul.c - Eclipse IDE

Search Project Run W Help
Bro-mes-&-ac-moivE @@ G it 0 iSO B @E bl B - (uickaccess)i =@
{5 Proje 8 = O || [g *matmulc Zﬂ [& matmulh [&) matmul.fpga.h [¥) README.md =0 |Eo =0 ,
- Bf[fi 44 for (unsigned int i = 0; i < m2size/b2size; i++) { vBAR -~ |®
>matmul [ma . . . A
» S prusba 45 setBlock(&a[;*sz;ze], (elem t)VAL A + }); o tdlibh
B > cstest 46 setBlock(&b[i*b2size], (elem t)VAL B - i); o unistdh
47 setBlock(&c[i*b2size], (elem t)VAL C); :Ezzﬂ;g
.vu 48 } o setBlock(el
49
50 #if defined(TIMING ALL)
51 #pragma omp taskwait
52 #endif
53 double t start = wall time();
54
55 for (unsigned int i = 0; i < msize/BSIZE; i++) {
56<//NOTE: Assuming that the following task will be executed in a s
57 // Otherwise, it must define the input and output data of c
58 #pragma omp task firstprivate(i)
Final il
B 59 { thaen a final clause is present on a kask construct and the final affinity
60 F clause expression evaluates to true, allocate
the generated task will be a final task. All task constructs default
o0l encountered during execution of a final depend
task will generate final and included tasks. Note that the use
02 of a variable ina final clause expression etach
of a task construct causes an implicit reference to the
[£] Problems &) Tasks E- variable in all enclosing constructs. firstprivate | “0-N~=0
No consoles to display at tf Final Task: if)
A task that forces all of its child tasks to become final and in_reduction
~ included tasks. mergeable i

Figure 3.23. IDE plugin showing the OpenMP task hints offered to the programmer

EG aT D44 Version 2 32 /

+ DMA and Xtasks low-level libraries

+ The Linux driver for the FPGA

3.4.3. Working with OmpSs in Eclipse Che

When Eclipse Che has started after initialization of the environment, a browser is started auto-
matically, with the view of the workspaces available. The user can create new workspaces, by
selecting the profiles fpga32 or fpgabs, in order to have OmpSs@FPGA installed for 32-bit or
64-bit Arm respectivelly. Figure 3.24] shows the initial workspace selection view.

& Eclipse Che | New Workspace X +
& C A Notsecure | 172.17.0.1:8080/dashboard/#/create-workspace ¥ ° :
i Apps ™ Gmail @ YouTube B Maps @ [} mimetypes-Ho.. GoToMeeting Christmann RECS...

Eclipse Che New Workspace -

NAME fpgaB4Environment

SELECT + Add stack fpga *

STACK

Ompss 32b 20201

OmpS5s 64b 2020.1

RAM .
£ @ dev-machine

Figure 3.24. Workspace selection in Eclipse Che with OmpSs@FPGA available

When then workspace is created, projects can be imported or created. Figure [3.25/ shows the
dotproduct project open. The session shows the file browser on the left-hand side, a main sec-
tion on the center and center-right with the code view, and the target machines defined and a
terminal session for command line utilities at the bottom. The top level menu is equivalent to
the traditional Eclipse menu, allowing the programmer to manage projects, files, and control the
build process.

When building a project, Eclipse Che compiles the source files included in the project with the
cross-compile tools. Mercurium splits the code following the target directives, and invokes the
cross-compiler gcc to generate the binary for the target, and invokes the Xilinx Vivado compiler
with the tasks targeting the FPGA, in order to build their IPs and merge them with the FPGA
interconnection and the task manager, and generate the bitstream.

The Eclipse Che repository is provided in: https://github.com/bsc-pm-ompss-at-fpga/eclipse-
ompss.

3.4.4. Conan-based installations

Conan [4] is a package manager that installs packages on a target directory. Conan checks the
compiler/architecture configuration on which it is running and the target environment, and com-

EG aT Dé.ly Version 2 33 /

& Eclipse Che | fpgaB4Environ: X &% OmpSsat FPGA/ Edipseche X | +
< C A Notsecure | 172.17.0.1:8080/dashboard/#/ide/che/fpgas4Environment ¥ ° [+]

i1 Apps M Gmail @ YouTube B¥ Maps [} mime types - Ho... GoToMeeting [Christmann RECS...

B Terminal x +

Figure 3.25. Dotproduct project in OmpSs@FPGA open with Eclipse Che

piles the packages from source.

We have taken advantage of Conan to provide a set of Conan scripts that guide the installation
of OmpSs@FPGA for the target x86_64, Aarch6s, and Arm32 architectures. The development
includes scripts for the following components that are generic, but it is preferable to have them
configured with a particular setting that we enforce by incorporating them in the compilation
phase:

- libz, the library supporting file compression and decompression.

- libxml2, used for Extrae configuration files in XML format

- papi, used for Extrae to collect hardware performance counters

- binutils, used for Extrae to obtain debugging information

When those packages are already available to be used in the OmpSs compilation, the process
continues by compiling and installing the OmpSs packages:

- Ait, the Accelerator integration tool for Vivado HLS
- Extrae, the instrumentation library

- libxdma/libxtasks, the low level FPGA support for OmpSs

Nanos++, the OmpSs-1 runtime library

- Mercurium, the OmpSs compiler

EG aT DYWA Version 2 34 /

After the compilation is successful a script activate.sh is provided to the user, in order to set the

proper environment variables (like PATH and LD_LIBRARY_PATH) in order to have access to the
new OmpSs installation.

The Conan-based installation scripts are provided in the repository: https://github.com/bsc-
pm-ompss-at-fpga/conan-recipes.

EG aT YA Version 2 35 /

4. Dataflow engines

DFiant is a dataflow hardware description language (HDL) that decouples functionality from im-
plementation constraints. DFiant brings together constructs and semantics from dataflow, hard-
ware, and software programming languages to enable truly portable and composable hardware
designs. The dataflow model offers implicit concurrency between independent paths while free-
ing the designer from explicit register placement that binds the design to fixed pipelined paths
and timing constraints. DFiant is implemented as a Scala library and offers a rich type-safe
ecosystem alongside its own hardware-focused type system (e.g., bit-accurate dataflow types,
input/output port types).

For the LEGATO stack DFiant can be used on platforms with FPGA hardware, where more fine-
grain hardware control is required. DFiant can ease both hardware engineers into the LEGaTO
stack and software engineers into hardware programming.

41. DFiant Evaluation

In this deliverable we introduce the DFiant evaluation while focusing on significant improve-
ments in programmability of FPGA devices without sacrificing performance or fine-grain hard-
ware generation control.

414. Programmability

We claim that DFiant is highly advantageous when it comes to hardware programmability, yet
it is difficult to prove so empirically. The closest empirical study can be found in Section|4.1.1.5
where we compare the Lines of Code (LoCs) between DFiant designs and equivalent non-DFiant
implementations. Other sections demonstrate the ease of programmability by showcasing var-
ious DFiant features compared to the hardware design status-quo.

4114, Mitigating Design Flow Proliferation

Hardware design flow currently suffers from over-proliferation of languages and tooling. Various
languages are used for design description (VHDL, Verilog, System Verilog), applying constraints
(SDC, XDC, UCF, LPF, LDC), and build scripts (Makefile, Bash, Python, TCL). Tools are varied be-
tween vendors and product families, and other third-party tools. This proliferation leads to
confusion among new users and inhibit FPGA adoption and build portability. Symbiflow [28] can
help reduce tooling proliferation, in an effort to create a “GCC for FPGAs,” but users still require
a separate language for constraints and building. Since DFiant is a Scala library, it can also offer
a way to deal not only with the design, but with the rest of the build flow. We can bridge this gap
by providing a common API to both constrain a design and build it. This advantage is twofold.
First, we reduce the entire flow language proliferation. Second, all the properties of our design
are now tied together, and can enjoy the same editor exprience, especially when refactoring. For
example, say we change a design of a top-level port name. In traditional design flow we may
have a mismatch between the design and constraints, but with both set in the same language
the compiler and editor can clearly mark the error early.

Figure[s.1 contains an example DFiant script that instantiates a design, compiles it to VHDL 2008,
commits it to a folder, prepare the GHDL simulator, and finally runs the simulation. This au-
tomation is also available for VHDL 93, Verilog 95/2005 and the modelsim and verilator tools. All
that is required to change the language/tool is to change the import statements in the first two
lines. This is an example how DFiant-based scripts can unify various tooling and flow to ease
hardware design. Additionally, since DFiant can enjoy the entire Scala ecosystem tooling, it can
provide nice features such as automatic ip downloading and version management (as a Scala
dependency). Also in the future, after migration to the imminent Scala 3 release, DFiant will also
benefit from the new python-like indentation-based (braceless) syntax.

414.2. Bit-accurate Compile-time Type Safety

Type safety improves programmability since it confines the user to provide arguments that only
fit the expected type and reports such errors early in the build process. The earlier we detect
failures, the better, and for hardware we need to detect bit-accurate type errors. This is why

EG aT Dagy Version 2 36 /

0 N O U A W N =

import compiler.backend.vhdl.v2008
import sim.tools.ghdl

val topSim =
new MyDesignSim() //instantiate the design
.compile //compile to the imported backend (VHDL2008)

.toFolder("MyDesignSim") //commit to folder
.simulation //prepare the simulation for the imported tool (GHDL)
.run() //run the simulation tool

Figure 4.1. Example of a script in DFiant that runs simulation in GHDL

DFiant is equipped with bit-accurate compile-time type safety. In DFiant we actually have two
different compile-times. First, since DFiant is a Scala library, a design must initially pass a Scala
compiler build process. Second, during Scala runtime, the DFiant compiler runs and completes a
series of checks and stages until it produces the required RTL solution. What is currently unique
in DFiant is the ability to detect various bit-accurate errors during the early Scala compilation
process. This ability, incorporated with an editor that supports the Scala presentation compiler,
enables viewing the errors inside the IDE. Figure [4.2] depicts how such errors are marked in an
editor.

18
19 trait Bad extends DFDesign { Bit index 9 is out of range of width 8

20 val x = DFUInt(8) Peek Problem No quick fixes available
21 val badSelection = x.bits(9,3)
22 X := 371

o

® Lab0.scala 2 of 2 problems

An assignment operation does not permit a wider RHS expression. Found: LHS-width = 8 and RHS-width = 9

23}

Figure 4.2. Example of DFiant bit-accurate compile-time error indications in the editor

411.3. Three Programming Paradigms in One

We demonstrated in previous deliverables how DFiant provides automatic pipelining for concur-
rent code. We also presented how finite state-machine (FSM) meta-programming enables to eas-
ily construct and concatenate FSMs from sequential-like statements (e.g., doFor , doWhile,
etc.). We also showed that the DFiant compiler has an intermediate presentation (IR) with RTL
semantics. This RTL-IR is among the last compilation stages before the backend is applied.

41.4. Inspected Compilation

DFiant enables inspecting the code at any compilation stage. A simple call to ‘printCodeString’
applied to the design instance or compilation stage prints out a DFiant-equivalent code repre-
sentation of that stage. This feature is extremely helpful in understanding the effect of complex
stages such as automatic pipelining. Figure contains a simple arithmetic-logic unit (ALU)
implementation with a manual three-cycle pipelining set for the multiplication operation. Con-
trarily, consider the design flow in regular HLS tooling. The developer writes code in a software
language such as C, and then needs to infer from other tool outputs (timing analysis, RTL out-
put, etc.) what happened after HLS compilation. This is a huge barrier for fine grain performance
tuning and debugging.

41.5. Reducing Lines of Code

DFiant aims to greatly improve designer productivity. To evaluate possible productivity gains we
chose various open-source use-cases and implemented them in DFiant: an AES cypher [19], an
IEEE-754 double precision floating point multiplier [24], a two-stage RISC-V core [32], a bitonic-
sort network [1], a cyclic redundancy check (CRC) generator/checker [14], and other simple ex-
amples [231]. We compared the use-cases and our implementations in lines of code (LoC). We
documented all results in Table [5.1]

We observe that DFiant code is often significantly more compact than its equivalent RTL im-
plementation (from 50% to 70% less code), because DFiant semantically implies much of the
additional information required by the RTL description. The only difference occurs at the RISC-V

EG aT YA Version 2 37 /

© 0 N e T s W N e

I T~ T = > S =S
© WL N e A W N~ O

© 0 N e U A W N e

I~ T = T =
L N <)

object ALUOp extends EnumType.Auto {
final val Or,Add,Mul = Entry()
}

adf class ALU extends DFDesign {
final val op DFEnum(ALUOp) <> IN
final val argi DFBits(32) <> IN
final val arg2 DFBits(32) <> IN
final val result = DFBits(32) <> ouT
final val argiu argi.uint
final val arg2u arg2.uint
matchdf(op)
.casedf(ALUOp.Or) {result := arg1i | arg2}
.casedf(ALUOp.Add) {result := (argiu + argau).bits}
.casedf(ALUOp.Mul) {result := (argiu * arg2u).pipe(3).bits} //manual pipeline set

}
import compiler.{Pipelining, PipelineMethod}
new ALU() //instantiate the ALU
.pipeline(PipelineMethod.Manual) //auto-balance a manual pipeline
.printCodeString //print the code of the balanced ALU

Figure 4.3. ALU manual pipelining example and running compiled code inspection

object ALUOp extends EnumType.Auto {
final val Or,Add,Mul = Entry()
}

2df class ALU extends DFDesign {
final val op DFEnum(ALUOp) <> IN
final val arga DFBits(32) <> IN
final val arg2 DFBits(32) <> IN
final val result = DFBits(32) <> OUT
final val argiu argi.uint
final val argau arg2.uint
matchdf(op.pipe(3)) //balanced
.casedf(ALUOp.Or) {result := (arg1 | arg2).pipe(3)} //balanced
.casedf(ALUOp.Add) {result (argau + argau).pipe(3).bits} //balanced
.casedf(ALUOp.Mul) {result (argiu * argau).pipe(3).bits}

}

Figure 4.4. ALU inspected code printout. Notice the addition of balancing pipe stage.

implementation. The reason is that the RTL code design is flat, while we invested substantial
code in hierarchical abstractions.

42.2. Performance and Other Metrics

Typically, FPGAs are really good platforms for energy efficient, secure, and massively parallel
applications. However, they are difficult to adapt generically across various vendor devices.
Therefore, once we mitigate the adoption problem and make it easier for developers from both
software and hardware worlds to program FPGAs productively, then we also get the other ben-
efits the LEGaTO stacks aims to achieve.

4.2. Integration with OmpSs

Figure 4.5/ shows how the programmer provides the DFiant kernels through the DFiant compiler
to the Vivado tool, and they are integrated in the FPGA project.

EG aT Dagy Version 2 38 /

Use Case Design Source LoC LoC
[#] |Reduction
[%]
DFiant 334
AES Cypher |- 64
Hsing Core 922
DFiant 180
FP Multiplier 47
Lundgren Core 340
Two_stage DFiant 557 79
RISC-V Samsoniuk Core |[311
DFiant 41
CRC 60
Drange Core 103
Fibonacci DFiant 8 74
Gen ExampleProblems | 31
Sequence |DFiant 32
56
Detector FPGA4Student 73
Moving DFiant 19
74
Average 4x4 |Qur RTL 72
Bitonic Sort |DFiant 36
- 60
Network VLSICoding 90
Priority DFiant 10
52
Encoder Kaufmann Core 21

Table 4.1. Comparing various RTL codes with equivalent DFiant codes in LoCs
The DFiant implementation is usually much more concise

5. Energy-Efficiency

In this Chapter we present two new research results produced in this Work Package. Section
presents an analysis of the energy-efficiency of two distributed, hardware-secured services specif-
ically designed for IoT devices. Section presents a novel study about how to tune machine
learning models’ hyperparameters in order to trade performance for energy efficiency. These
studies being very recent, their results are not taken into account in the LEGaTO usecases. Nev-
ertheless, we believe that both studies present pertinent results, who will help building LEGaTO-
like applications in the future.

5.. Energy-efficient loT Applications

Distributed secure services benefit from the increasing availability of hardware-based trusted
execution environments (TEE) in mobile, edge and loT-grade processors. Arm TrustZone [8] and
Intel SGX [12] are the most prominent TEEs among those processors. Such TEE-enabled devices
can shield applications from powerful attacks, compromised platforms or malicious users. The
cumulative availability is paving the way for large-scale deployments of secure services which
allows trusted dissemination and processing of confidential and sensitive data.

In this section we report on the energy-efficiency of two distributed secure services which are
specifically designed for 10T devices: in[subsection 5.1.1we evaluate the networking performance
of secure services and in|subsection 5.1.2|we deploy a prototype blockchain network for secure

EG aT YA Version 2 39 /

OmpSs@FPGA }
Application

DFiant kernels

v

Mercurium [OmpSs phase] [FPGA phase]

"| Code generation

[Host code + Nanos calls]

A4

DFiant compiler
AutoAlIT tool
Vivado HLS /
Task 4
Netlist DMA
l

A
OmpSs.elf |smp N4
= « Hardware /i 2do

generation

Nanos
FPGA dmalib
Extrae OMPT ‘

OS (Linux) +
Platform Device Tree +
FPGA DMA driver
(BOOT.bin, image.ub)

Figure 4.5. Compilation environment showing the integration of the DFiant kernels onto the OmpSs toolchain

smart contract execution.
54.1. Networking in ARM TrustZone

IPERFTZ [17] is an open-source tool for secure services running on ARM TrustZone. It provides
information on network performance that is necessary in order to uncover bottlenecks in the
design and implementation of secure services. Our micro-benchmark expands on the results
presented in [18] and reported in D4.2 “First release of energy-efficient, secure, resilient task-
based programming model and compiler extensions”.

5.4.44. Networking for Secure Services in OP-TEE

At this point we refer the reader to D4.2 section 5.3.1.2 where we have already outlined the ARM
TrustZone architecture as well as the GlobalPlatform APIs. In this section we describe the net-
working capabilities of secure services, also Rnown as trusted applications (TA) in OP-TEE

TAs can receive their network configuration or network parameters from their normal world
counterpart using shared memory. The GlobalPlatform proposes two different approaches for
TEEs to implement a network stack: (1) the TEE borrows the network stack of the rich execution
environment (REE) or (2) the TEE relies on trusted device drivers. The former approach requires
the presence of a supplicant in the REE (an agent that responds to requests from the TEE) in or-
der to invoke remote procedure calls (RPC) on the borrowed network stack. The later requires a
full network stack implementation in the secure world. Clear tradeoffs of these two approaches
are security in the form of trusted computing base and confidentiality, performance in terms of
latency and portability. Both approaches have their advantages and disadvantages and should
be used based on the requirements of a secure service. For the remaining sections we will only
refer to the first approach borrowing the network stack.

visualizes the interaction between secure and normal world in OP-TEE starting from
a secure service network request. The secure world hosts the TA, which interacts directly with
libutee (Figure 5.1-@). When using GlobalPlatform’s Socket API [16], Libutee does a system
call (Figure 5.1+-®) to OP-TEE. OP-TEE then delegates the request to the socket pseudo TA (PTA,
®). The secure monitor is invoked through a SMC (Figure 5.1+@), which maps the data
from the TEE to the REE’s address space. From there execution switches into the normal world
and the OP-TEE driver (Figure 51-@©) resumes operation. Requests are then handled by the sup-
plicant (Figure 51}@). The agent executes system calls using Libc (Figure 5.1} @) to directly relate
the underlying network driver (Figure 5.1-®) over the POSIX interface. Once data reaches the net-
work driver, it can be sent over the wire (Figure 5.1|-€)). Whenever data is sent or received using
this approach, it traverses all exception levels, both secure (from ELo up to EL3) and non-secure
(from EL2 to ELo and back up).

"https://www.op-tee.org/ accessed on 28:10.2020

EG aT Dé.ly Version 2 40 /

https://www.op-tee.org/

<> Shared memory
<> Socket

o ELO

Normal World

| Server |
Figure 5.2. Interaction of iperfTZ's components in
the client-server model.

Figure 5.1. Execution flow inside OP-TEE

544.2. Architecture of IPERFTZ

iperfTZ consists of three components: (1) the client application (CA), (2) the TA, and (3) the server.
Together, these three components form a client-server model as shown in|Figure 5.2(which allows
exchanging network packets between the server and the TA. In the following paragraphs we
explain each component individually.

Client application. The CA is the user interface to the TA running in the normal world. It uses
two shared memory areas to (1) exchange arguments passed over the command line interface
with the TA and (2) to retrieve metrics gathered by the TA during the network measurement.
Most notable arguments exchanged with the TA are the IP address of the server component, the
dummy data size, and the socket buffer size. Depending on the arguments, iperfTZ will run a
network throughput measurement while either maintaining a constant bit rate, transmitting a
specific number of bytes or running for 10 seconds.

Trusted application. According to the GlobalPlatform standard, TAs can only take the role of a
client in a client-server model. Therefore, the TA has to open a client connection to a running
server. As soon as the connection is established, the measurement starts. During the measure-
ment, the TA will gather metrics on the number of transmit calls, bytes sent, time spent in the
transmit calls and the total runtime.

Server. The server is deployed in a REE waiting for incoming network connections to start a
network measurement. Similar to the TA, the server will gather metrics and additional data not
accessible to a TA during the measurement.

514.3. Evaluation

We have evaluated iperfTZ's performance and energy consumption to iperf3'sPon real and emu-
lated hardware. The CA and the TA were deployed on a Raspberry Pif|as well as QEMU[|emulating
a Raspberry Pi. Due to network bandwidth limitations of the Raspberry Pi we included emulation
using QEMU into our evaluation.

Figure 5.3[shows that iperfTZ in general exceeds on both setups the network throughput of iperf3
due to its simplistic nature. As expected, we were not able to observe any degradation of the
network throughput on the Raspberry Pi due to an overhead from frequently switching between
secure and normal worlds, as in [18]. However, by lifting the network bandwidth limitation us-
ing QEMU we observe a serious degradation of the network throughput when trying to achieve
Gbit s~ bit rate. Network throughput beyond 500 Mbits—! is strongly affected by a world switch-
ing overhead, even degrading beyond unaffected throughput rates.

In we show the energy consumption of both setups. Before reaching the saturation
point, iperfTZ consumes about 2 J (11 %) respectively 173 J (36 %) more energy than iperf3. The
additional energy consumption if iperfTZ can be attributed to the execution in the TEE and cer-

2https://software.es.net/iperf//accessed on 28.10.2020
Shttps://www.raspberrypi.org/products/raspberry-pi-3-model-b accessed on 28.10.2020
4https://www.qgemu.org/accessed on 28.10.2020

EG aT YA Version 2 M /

https://software.es.net/iperf/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b
https://www.qemu.org

o= perfs wperiz WA G 120F Miperts wiperfrz
o)] o) 100
3 I gz %
5 1§ o
5 iF 4
E 20 -
0 Il Il Il Il i) 0 Il
0 20 40 60 80 100 0 200 400 600
Throughput [Mbit/s] Throughput [Mbit/s]
(a) Raspberry Pi (b) QEMU

Figure 5.3. TCP network throughput measurements for 128 KiB buffer sizes.

120
100
80
60
40
20

3000 . iperf3
B iperfTz

2000

Energy [J]
Energy [J]

1000

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512 1024 2048
Bit rate [Mbit/sl Bit rate [Mbit/sl
(a) Raspberry Pi (b) QEMU

Figure 5.4. Energy consumption during TCP network throughput measurements. Bit rates on the x-axis are
given in logarithm to base 2.

tainly also to the world switching overhead under a saturated system. With our evaluation we
were able to quantify the world switching overhead by a factor of 1.7 x.

5.4.2. Executing Smart Contracts in ARM TrustZone

TZ4FABRIC is an open-source extension to Hyperledger Fabric | blockchain framework that
enables execution of smart contracts with ARM TrustZone. By exploiting the TEE, TZ4FABRIC can
introduce confidentiality guarantees to protect the smart contract logic as well as the processed
data from malicious attackers.

54.24. Architecture of TZ4FABRIC

TZ4FaBRIC leverages the OP-TEE framework to exploit ARM TrustZone. The design of TZ4FABRIC
is strongly influenced by Fabric Private Chaincode which exploits Intel SGX to shield smart
contract execution. TZ4FABRIC is divided into three components as shown in (1) a
wrapper that facilitates communication with (2) the proxy using gRPCHand the ledger. The proxy
is deployed in the normal world and provides an interface for the wrapper to the (3) chaincode
(Hyperledger Fabric term for smart contract) running as TA. In order to simplify the design we
separate the proxy from the wrapper. However, these two components could be integrated into
the same TrustZone-enabled device. The chaincode, the client, the orderer and the ledger are
integral components of Hyperledger Fabric and constitute a blockchain network.

Shttps://www.hyperledger.org/use/fabric/accessed on 28.10.2020
Shttps://grpc.io/|accessed on 28.10.2020

7
2 EF'I' e
Client Wrﬁper Proxy
Orderer

\

Figure 5.5. Architecture of TZ4FABRIC

EG aT Dé.ly Version 2 42 /

https://www.hyperledger.org/use/fabric
https://grpc.io/

a) Read latency b) Transactions c) Energy

2 T A T T - 600 | I I]
Q
X 400 |- =
= > S 400 [=
7 5 2 1
§ 10 £ 200 | B
2 ool 4 -
' o ¢ N EE i 2
R T s Sl [N IR Een 0. chiR ARds iR o Bon—n—no"
0 200 400 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 200 400
1 2 4 8 16 32 64 128
Throughput [tx/s]) Throughput [tx/s]
Number of clients
d) Write latency e) Transactions f) Energy
2 [T I I i 600 [T T T —
Q3
—_ X 400 | =
) = < 00 |- .
5 H P y
c - >
9 & 200 (— - &
® ‘ E 5 200 4 —
- A o c
o] o |F sl i
o LEDD-O- O L N : :] O,M—n‘—n——‘n}‘,
0 200 400 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 200 400
1 2 4 8 16 32 64 128
Throughput [tx/s] Throughput [tx/s]
Number of clients
| —ll— baseline QEMU QEMU baseline RaPi —A— RaPi |

Figure 5.6. Throughput-latency, transactions and transaction energy for read/write invocations. Top row
are read transactions, bottom row are write transactions.

54.2.2. Evaluation

We evaluate our prototype in a small-scale deployment of 27 machines in a Hyperledger Fabric
blockchain network. The orderer, 8 wrapper and 8 proxy (QEMU instance emulating a Raspberry
Pi) nodes each run on their own physical server. As 10T devices we deploy 8 Raspberry Pi 3B+ as
proxy nodes. In our benchmark we use a simple chaincode which tracks the coffee consumption
in an office. Clients submit transactions to track their coffee consumption and query the current
coffee statistics.

In a benchmark, with results shown in|Figure 5.6, we evaluate the throughput and latency of our
prototype. Up to 128 clients repeatedly invoke read and write transactions over a duration of 5
minutes. During the baseline measurement the chaincode is run in the normal world instead of
the secure world.

For the read and write baselines we observe that both are very similar to each other. With
the baseline measurements we are not able to saturate the system. However, with the ARM
TrustZone-enabled environments we consistently observe saturation of the system beginning
at 8 clients around 65 tx/s. This means that client transactions on the chaincode are essentially
invoked sequentially. The reason for this low throughput is twofold: (1) the substantial overhead
due to shielding TAs with ARM TrustZone and (2) potential performance and reusability improve-
ments for TAs running as chaincodes. In general we observe an increase in latency by a factor
of 2.3 before reaching the saturation point, which is in line with the world switching overhead

described in|subsection 5.1.1

During the benchmark we recorded the energy consumption shown in[Figure 5.7| of the nodes
in the Hyperledger Fabric blockchain network. The energy consumption of the nodes is rather
stable and only slightly increasing with the number of clients. We highlight two deviations from
our expectations: (1) the orderer and wrapper energy for the baselines rise (Figure 5.7}a,b,d,el)
as well as (2) the energy of the proxy (Figure 5.7Hc,f]).

The former indicates the saturation of the Hyperledger Fabric network. This assumption is con-
firmed by the decline of average transactions per client in the network and the approach to the
saturation point seen in The later is a result of the world switching overhead when
chaincodes are invoked. As a result the performance governor in the operating system has to
operate the CPU for longer intervals at higher operating points (i.e., voltage and frequency). This
is better seen in[Figure 5.6F[c,f], where the average energy per transaction increases proportion-
ally to the number of clients. On the Raspberry Pi the energy consumption increases by a factor

EG aT Dty Version 2 431[63

a) Orderer reads b) Peer reads c) Proxy reads

—- = =
= =2 =
= 30 [~ 1% 20 /u,., > 30 | -
> %) E-E—u BN
o 5 5
2 £ 28 |- /"/ 15 20 N
o 28| ‘ - = >
g 8 A 8
_E :‘ a 27 |- g 0 |
4 w0 w0
3 2 >
© 26 | : P ! R R ndman
0 200 400 0 200 400 0 200 400
Throughput [tx/s] Throughput [tx/s] Throughput [tx/s]
d) Orderer writes e) Peer writes f) Proxy writes
- T T T = T T T = T T T
= | | X
2 2 = T 30| -
% /n/ % 28 [- & -E-u—a—8n
T 28 [- 2 2 20 |-]
c H]
o >
5 3 27 |- -
g 27 | g : g 10 |- -
] s
2 | s gt T
26 b \ \ T, Lo | | 0 \ \ -
0 200 400 0 200 400 0 200 400
Throughput [tx/s] Throughput [tx/s] Throughput [tx/s]
| —Jll— baseline QEMU QEMU baseline RaPi —A— RaPi

Figure 5.7. Energy consumption of nodes in the Hyperledger Fabric network. Top row are read transactions,
bottom row are write transactions.

of 1.05 and by a factor of 1.25 with QEMU beyond the saturation point.
54.3. Achievements

To the best of our knowledge we have developed the first network performance tool called
iperfTZ for secure services in OP-TEE exploiting ARM TrustZone. iperfTZ is an open-source proto-
type[]that is capable of identifying bottlenecks in the network performance of secure services.
Furthermore, with iperfTZ we were able to identify and quantify the energy and performance
world switching overhead of networked secure services. Our research results were published
and presented at S55'19 in Pisa, Italy.

TZ4Fabric is a novel approach to bring support for executing smart contracts in Hyperledger
Fabric on OP-TEE using ARM TrustZone. With the TZ4Fabric prototype we have shown that it is
possible on ARM hardware to reduce the energy cost by one order of magnitude compared to
state-of-the-art hardware used with Hyperledger Fabric. However, the improved energy con-
sumption comes at the cost of performance, which is also a result of the additional security
when running the service in OP-TEE or ARM TrustZone in general. Our research results were
published in presented at SRDS'20 in Shanghai, China.

5.2. Energy Efficiency Through Deep Learning Parameter Tuning

Deep neural network (DNN) learning jobs are common in today’s clusters due to the advances in
Al driven services such as machine translation and image recognition. The most critical phase of
these jobs for model performance and learning cost is the tuning of hyperparameters. Existing
approaches use techniques such as early stopping criteria to reduce the tuning impact on learn-
ing cost. However, these strategies do not consider the impact that certain hyperparameters
and systems parameters have on training time. To tackle this problem, we propose PipeTune,
a framework for DNN learning jobs that addresses the trade-offs between these two types of
parameters. PipeTune takes advantage of the high parallelism and recurring characteristics of
such jobs to minimize the learning cost via a pipelined simultaneous tuning of both hyper and
system parameters. Our experimental evaluation using three different types of workloads indi-
cates that PipeTune achieves up to 22.6% reduction and 1.7x speed up on tuning and training
time, respectively. PipeTune allows for improving performance and, in our experiments, lowered
energy consumption up to 29%.

Thttps://github.com/legato-project/iperfTZ

EG aT Dé.ly Version 2 L /

https://github.com/legato-project/iperfTZ

Hyperparameter i | Hyperparameter |
tuning input ¢ 1 tuning output

Model *J [Dataset 5]

[Parameters J [Ranges] -nr:giir:e?d
: Objective .| (Optimal
[Metrlcs J {funé’(ion M} P

{ Trainingtrial | { Trainingtrial | | Training trial |

input b b output
. |Model | !

[Dataset 5} [Egid”e?d }

[Py ... P, }w[Py ... Py }Q[Score T;]

Figure 5.8. Hyperparameter tuning flow.

5.2.1. Problem statement

One of the first challenges of applying deep learning algorithms in practice is to find the appro-
priate hyperparameter values for a given workload. We assume that most DNN tuning jobs make
use of some existing hyperparameter optimization solution. In the following we refer to these
types of jobs as HPT Jobs (i.e., Hyperparameters Tuning Jobs).

A given HPT Job takes as input a given workload, a set of parameters, its respective set of range
values, an objective function and the metric of interest (e.g., accuracy, performance, energy).
This job spawns a collection of training trials based on the possible values of the parameters,
following a given search algorithm (e.g., GridSearch, HyperBand). Each training trial takes as
input the workload and a set of fixed values for the parameters of interest, where these values
belong to their respective given ranges. These trials can run either sequentially or in parallel
depending on the setup. They produce a trained model and a score for the given parameters
values. Scores correspond to the metric of interest defined by the user. The optimal set of pa-
rameters values is chosen by applying the objective function to the scores. Figure[5.8]illustrates
this process.

We consider a deep learning cluster consisting of N nodes, each containing C' cores and M GB
of memory. Note that despite a common trend to include GPUs in DNN clusters, we explicitly
put aside this option. We do this given the (rather small) nature of jobs on which we focus, for
which commodity machines are sufficient for training. HPT Jobs are scheduled in a FIFO manner.
We categorize these jobs in the following two main types: Type-I: tuning the same model for
different datasets (e.g., recommendation engines), and Type-Il: tuning different models for the
same dataset (e.g., computer vision).

Both types of tuning jobs can still be divided into two sub-types: (a) same set of hyperparameters
and ranges, and (b) same set of hyperparameters but different ranges. Each job, independent
of its category, performs the earlier described tuning process from scratch. A key observation
is that these jobs could benefit from previously computed results for other jobs in the same
category to converge faster. Moreover, training trials spawned by the same HPT Job run all with
the same system parameters even though they might require different resources configuration.

Another major limitation of the currently available approaches to hyperparameter auto-tuning
is that only a single objective metric can be specified. This means that for a given HPT Job, one
could choose to optimize either accuracy or performance, but not both simultaneously.

In summary, our problem’s input consists of an HPT Job with the objective of achieving either
maximum accuracy, or maximum accuracy with minimum training time. The former must output
the best possible hyperparameters leading to the highest accuracy, independent of training time.
For the latter, a combination of optimal hyper and system parameters is expected which leads
to the highest accuracy and lowest training time. Note that for both scenarios, a shorter tuning

EG aT YA Version 2 45 /

Algorithm 1 PipeTune algorithm.

Function train(model, data, hyperparameters):
job = async model.train(data, hyperparameters) async tuneSystem(job) job.wait() return
model
PipeTuneTunetuneSystem(model, data) profile = getProfile(job) (score, config) = getSimilar-
ity(profile) if score > threshold then
| setSystemParameters(config)

else
foreach sp, € systemParameters do
| setSystemParameters(sp,) wait until epoch finishes add collected metrics to m

bestConfig = find best config in m setSystemParameters(bestConfig)

Table 5.1. Workloads used for experiments.

Model Dataset Datasize TrainFiles Test Files
LENETS MNIST 12 MB 60000 10000
Type-I
LENETS FASHION-MNIST 31 MB 60000 10000
CNN NEWS20 15 MB 11307 7538
Type-Ii
LSTM NEWS20 15 MB 11307 7538
JACOBI RODINIA 26 MB 1650 7538
Type-lll SPK-MEANS RODINIA 26 MB 1650 7538
BFS RODINIA 26 MB 1650 7538

time is beneficial, as allowed by our approach.
5.2.2. Implementation

PipeTune implements Algorithm [1fin Python (v3.5.2) and it consists of 947 LOC. We leverage two
open-source projects, namely Tune and BigDL. Tune [23] is a Python library for hyperparameter
search, optimized for deep learning and deep reinforcement learning [22]. Tune provides several
trial schedulers based on different optimization algorithms. While we select HyperBand for the
reminder of this work, Tune allows to switch among the available ones, as well as to implement
new ones. As a consequence, PipeTune indirectly supports all its hyperparameter optimization
algorithms.

The training applications are executed by BigDL [13], a distributed deep learning framework on
top of Apache Spark. BigDL supports TensorFlow and Keras, hence PipeTune supports models
defined using such frameworks. The Ground Truth module is based on a battle-tested k-means
implementation openly available in the scikit-learn machine learning library for Python [30].

Finally, as storage backend, we leverage InfluxDB (v1.7.4), an open-source time series database.
It offers a convenient InfluxDB-Python client for interacting with InfluxDB which we use
to query information regarding the collected system metrics. PipeTune is released as open-
sourcefl

5.2.3. Evaluation

This section presents our in-depth evaluation of PipeTune using real-world datasets. Our main
findings are:

1. PipeTune achieves significant tuning speedups without affecting model performance (i.e.,

8https://github.com/isabellyrocha/pipetune

EG aT Dé.ly Version 2 46 /

Accuracy Evolution - news20 dataset
100 : PlpeT‘une = Tune V1‘ —— Tuqe V2 —

. A
w0 -
20 /_,i//

1 2 3 4 5 6 7 8 9 10
Wall Clock Time (x10°% s)

Accuracy [%]

Figure 5.9. Accuracy convergence.

accuracy);

2. By speeding up the tuning process, we also have a more energy efficient approach, not only
due to the runtime reduction but also because of the more efficient utilization of system
resources;

3. The proposed approach is sensitive to varying system loads as this is also reflected on the
events used to profile and our system adapts on a fine granularity (i.e., epochs level).

5.2.31. Experimental Setup

We deployed our experiments using Type-l and Type-Il workloads on a cluster of 4 quad-socket
Intel E3-1275 CPU processors with 8 cores per CPU, 64 GiB of RAM and 480 GB SSD drives. Experi-
ments involving Type-IIl workloads are deploy on a single node containing an Intel E5-2620 with
8 cores, 24 GB of RAM and a 1 TB HDD. All machines run Ubuntu Linux 16.04.1 LTS on a switched
1 Gbps network. Power consumption is reported by a network connected LINDY iPower Control
2x6M Power Distribution Unit (PDU), which we query up to every second over an HTTP interface
to fetch up-to-date measurements for the active power at a resolution of 1W and 1.5% precision.

We consider 7 state-of-the-art deep learning workloads for image classification, LLC-Cache com-
putational sprinting and natural language processing. Table [5.1)summarizes their details.

LENETS [21] is a convolutional network for handwritten and machine-printed character recogni-
tion. Convolutional Neural Networks (CNNs) [25] are a special kind of multi-layer neural net-
works, trained via back-propagation. CNNs can recognize visual patterns directly from pixel
images with minimal preprocessing. Long Short-Term Memory (LSTMs) [15] are artificial Recur-
rent Neural Networks (RNNs) architectures used to process single data points (such as images,
connected handwriting recognition and speech recognition), as well as sequences of data (i.e.,
speech, videos). Finally, Jacobi is a differential numerical solver, BFS is breath-first-search and
spk-means is k-means implemented on top of Spark framework.

The MNIST dataset [20] of handwritten digits has a training set of 60000 examples, and a test
set of 10000 examples. The digits have been size-normalized and centered in a fixed-size image.
FASHION-MNIST dataset [35] is a dataset of article images consisting of a training set of 60000
examples and a test set of 10000 examples. Each example is a 28x28 grayscale image, associated
with a label from 10 classes. FASHION-MNIST shares the same image size and structure of training
and testing splits as the original MNIST dataset. The NEws20 dataset [3] is a collection of 20 000
messages collected from 20 different netnews newsgroups. We sample uniformly at random
1000 messages from each newsgroup, and we partition them by name. The RobpINIA Benchmark
Suite [11] is a collection of profiling short-term resource allocation (i.e., computational sprinting)
policies which targets heterogeneous computing platforms with both multicore CPUs and GPUs.
These workloads have the objective to classify or predict the original data reserved for testing
purposes.

There are several potential hyperparameters to tune. For practical reasons, in our evaluation we
select the 5 described below. Note that their recommended range is typically application-driven,
and we settle on specific values without however generalizing for any workload.

1. Batch size. Number of samples to work through before updating the internal model param-

EG aT YA Version 2 47 /

Trial Time Evolution - news20 dataset

» PipeTune Tune Vi - Tune V2 —
o 25 T T : T T T T T
X 5 \ A

g

Eoasl

K -\ x<_/
'—

o 1 e

£

£

S 0.5 | | | | | | | |
'—

1 2 3 4 5 6 7 8 9 10
Wall Clock Time (x10° s)

Figure 5.10. Training trial time convergence.

Tune V1 = Tune V2 m PipeTune =
(a) Model Accuracy (b) Training Duration (c) Tuning Duration (d) Tuning Energy
100 T T T T 2 T T T 1oF

- - = 220t

=80 2151 Tgl o

60 o] S qs5f

8 x 1t X 6 X,

§ 40 e 24 3104

<20 =050 = S 05
]

0 lenet lenet cnn Istm 0 lenet lenet cnn Istm 0 lenet lenet cnn Istm 0 lenet lenet cnn Istm
mnist fashion news20 news20 mnist fashion news20 news20 mnist fashion news20 news20 mnist fashion news20 news20

Figure 5.11. Evaluation of PipeTune’s accuracy, performance and energy consumption for Type-I and Type-Ii
Jobs.

Tune V1 = Tune V2 m PipeTune m

(a) Model Accuracy (b) Training Duration (c¢) Tuning Duration

(d) Tuning Energy

n

o

Time [x10% s]
cwu =N O W

jakobi spkmeans bfs jakobi spkmeans bfs jakobi spkmeans bfs

jakobi spkmeans bfs

Figure 5.12. Evaluation of PipeTune’s accuracy, performance and energy consumption for Type-IIl Jobs.

eters. Large values for batch size have a negative effect on the accuracy of network during
training, since it reduces the stochasticity of the gradient descent. Range: [32 - 1024].

2. Dropout rate. Dropout randomly selects neurons to be ignored during training. Dropout layers
are used in the model for regularization (i.e., modifications intended to reduce the model’s
generalization error without affecting the training error). The dropout rate value defines the
fraction of input to drop to prevent overfitting [26]. Range: [0.0 - 0.5].

3. Embedding dimensions. Word embeddings provide a mean of transfer learning. This mech-
anism can be controlled by having word vectors fine-tuned throughout the training process.
Depending on the dataset size on which word embeddings are being refined, updating them
might improve accuracy [7]. Range: [50 - 300].

4. Learning rate. Rate at which the neural network weights change between iterations. A large
learning rate may cause large swings in the weights, making it impossible to find their optimal
values. Low learning rates requires more iterations to converge. Range: [0.001 - 041].

5. Number of epochs Number of times that the learning algorithm will work through the entire
training dataset. Typically, larger number of epochs yields longer runtimes but also higher
training accuracy. However, the number of epochs required to achieve a given minimum de-
sired accuracy depends on the workload. Range: [10 - 100].

For the purpose of this evaluation, we restrict the list of parameters to number of cores and
memory. However, the same mechanisms can be applied to any other parameter of interest
(e.g., CPU frequency, CPU voltage). In our cluster, the ranges of valid values for system parameter
tuning are [4 - 16] and [4 - 32] (GB) for for number of cores and memory, respectively.

EG aT YA Version 2 48 /

We define as our baseline (Tune V1) a system tuning hyperparameters and ignoring any system
parameter. We rely on HyperBand for the parameter optimization with the objective function set
to maximize accuracy. We then include the list of system parameters to be considered in the list
of parameters to be tuned by the HyperBand algorithm (Tune V2). We also include the training
duration as part of the optimization function which in this baseline is set to maximize the ratio
accuracy to duration.

5.2.3.2. Convergence Evolution

In order to build our initial similarity model we rely on profiling data of the workloads described
in Table For each workload, we vary the system configurations as follows. Memory allocation
can be 4GB, 8GB, 16GB, and 32GB. The total number of cores that could be allocated were 4, 8,
or 16. Finally, batch size could take the values 32, 64, 512, or 1024. In total, this sums up to 48
different configurations for each workload. There is no reason to expect variations in the data
collected from different training instances using the exact same parameters. However, we repeat
this process twice for each configuration to make sure that the achieved model is not affected
by potential unseen variations.

We begin our evaluation by analyzing the convergence trajectory of PipeTune compared to Tune
V1 and Tune V2.[5.9illustrates the accuracy evolution of the training trials over the tuning time of
a CNN model on the NEws20 dataset. We observe that PipeTune converges to an accuracy value
comparable to Tune V1 but at a much faster rate. For instance, PipeTune reaches a 60% accuracy
after approximately 4500 seconds. On average our approach is 1.5x and 2x faster than Tune V1
and Tune V2, respectively.

The training time achieved shows similar behavior (see [510). Interestingly, Tune V1 performs
worse than Tune V2. Since Tune V1 optimizes only for accuracy, the most accurate model not
necessarily achieves the shortest training time. On the other hand, as Tune V2 optimizes for
the ratio accuracy to performance, the accuracy achieved might not be the highest possible.
However, the training time in the given configurations might be lower (which is exactly what
happens in this instance of the problem). Finally, we observe that PipeTune consistently presents
shorter trial times than the other two approaches during the entire tuning process.

5.2.3.3. Single-Tenancy

We now consider a single-tenancy scenario, and assume each HPT Job runs in a dedicated cluster,
where the required resources demanded by the system parameters are available and exclusive
for a given tenant. This prevents interference caused by other jobs co-located on the same
cluster. However, as a given HPT Job spawns several training trials asynchronously, the cluster
still remains shared among these sub jobs. We evaluate how PipeTune performs in such stable
setting, comparing it against Tune V1 and Tune V2, for all the workloads.

Comparison with baseline. presents the results of model accuracy, training and tuning run-
time, and overall cluster energy consumption of offline HPT Jobs for the different workloads
described in Table[5.]

(a) presents the accuracy results. We can observe that the accuracy of PipeTune is not af-
fected by the performance optimization. In fact, results are on par with Tune V1, where hyper-
parameters tuning is done with the only objective of maximizing accuracy. As expected, Tune V2
decreases accuracy up to 43%, since the objective function no longer tries to optimize accuracy
but also takes the runtime into account.

(b) shows the training time of the achieved model. In this case, PipeTune presents compara-
ble results to the baseline. In fact, we observe up to 1.7x speed-up in comparison with Tune V2
which focuses exactly in reducing training runtime. We observe that Tune V2 increases tuning
duration by up to 18% when compared to Tune V1. This happens for the following two reasons.
First, the search space of Tune V2 is larger than of Tune V1, as it includes the system-parameters.
Second, the optimization function consists of accuracy and runtime together. These two reasons
make it harder for the search algorithm to find the optimal set of configurations, hence longer
tuning times are observed.

On the other hand, PipeTune reduces tuning runtime by at least 18% when compared against
Tune V1, as shown in (c). This performance gain is obtained because the search space and

EG aT DYWA Version 2 49 /

Avg. Response Time
Tune V1 mm Tune V2 = PipeTune mm

Time [x10° §]
o N S (o2} [o¢] o

Type-I| Type-ll all

Figure 5.13. Average response time for Type-1 and Type-Il Jobs considered independently and all together.

Avg. Response Time
Tune V1 mm Tune V2 mm PipeTune ==

T|me[><103s]

jacobi bfs spkmeans all

Figure 5.14. Average response time for Type-Ill Jobs.

optimization function remains the same, and at the same time PipeTune finds and applies during
runtime the optimal system configurations for each trial. Moreover, all the additional steps
introduced by PipeTune are done in parallel, without impacting the hyperparameters tuning
process.

(d) reports the energy results. The overall energy consumption of the cluster is directly
affected both by the performance decays and gains. Compared against Tune V1, we observe up
to 22% energy increase for Tune V2 and up to 29% energy decrease for PipeTune.

compares Tune V1, Tune V2 and PipeTune on a single node. The Type-Ill workloads used
in these experiments have shorter epochs and each a different CNN model. Previous experi-
ments deploy PipeTune on workloads with epochs lasting minutes. Long epochs work in favor of
PipeTune since low-overhead profiling is performed across the first couple of epochs to classify
new workloads. Therefore, next we perform an extra analysis on Type-Ill Jobs which present this
more challenging setup for PipeTune to observe how it behaves.

(a—d) plots the same metrics as seen in The goal is to test how well PipeTune can improve
tuning for workloads with short but many epochs per trial. Here we can observe that PipeTune
also achieves the expected results in this more challenging scenario and reduces both training
and tuning time when compared to the baseline systems. Regarding model accuracy, we can
also see that our approach achieves comparable or better results than the baseline. Finally, the
energy results reflects the performance gains resulting in a more energy efficient approach as
well.

To summarize, for these single-tenancy scenarios, PipeTune presents better performance with
up to 23% reduction on tuning time, is more energy efficient reducing up to 29% the overall
energy consumption of the utilized cluster, and does not affect model accuracy as the observed
differences in this aspect are negligible.

Profiling overhead. Profiling is a fundamental part of our system design and essential for the
decision making process. During the profiling of a given epoch, the extra computation introduce
additional load, depending on the system configuration. However, as this profiling overhead
only occurs in the epoch granularity and does not apply for all the epochs, the performance
benefits resulting from tuning the system-parameters overtake the measured overhead. The
experimental results presented above also support these assumptions as, otherwise, we would

EG aT A Version 2 50 /

not observe performance gains when compared with the approaches Tune V1 and Tune V2 which
do not perform any profiling.

5.2.3.4. Multi-Tenancy

Next, we evaluate PipeTune in a multi-tenancy scenario (i.e., a shared cluster handling multiple
HPT Jobs). In this case, we show the average response time of jobs as an indicator of perfor-
mance. We consider that jobs arrive randomly with the interarrival times being exponentially
distributed. For the case where two workload types are considered together, each of them cor-
responds to 50% of the overall jobs (i.e., equally balanced). In all cases, within a given workload
type, the workloads are chosen following a round-robin strategy. The portion of overall unseen
jobs corresponds to 20%.

[5:13|shows the results for the multi-tenancy scenario considering workloads of Type-I and Type-
Il grouped by type as well as the overall results. As in Section this evaluation has been
performed in a distributed environment. In this experiment we observe improvements similar
to the ones in the single-tenancy scenario. Regarding response time, PipeTune results in up to
30% reduction when compared with Tune V1 and Tune V2.

[5.12) shows the same results described above but considering workloads of Type-lil. This trace
was executed in a single node in contrast with the distributed environment of the previously
described results. In this specific scenario we observe that the performance gain trends earlier
observed becomes even more evident in such environment and workload type. In this case,
PipeTune resultsin up to 65% reduction on the average response time in comparison with Tune V1
and Tune V2. This indicates that the overhead of computation added for the unseen jobs is
compensated by the gain of future similar incoming ones.

EG aT YA Version 2 51 /

6. Security and Fault-Tolerance

64. Trusted Consensus in Untrusted Environments

The shift of computing and storage from one’s own datacenters to the cloud has created con-
cerns in regards to the confidentiality, integrity and consistency of the processed and stored
data. Consistency implies that storage replicas can neither diverge nor can they be rolled back
to an older version. At the same time, clouds offer data durability and service availability at
new levels by implementing convenient and affordable replication mechanisms across multiple
data centers. Ensuring confidentiality, integrity, consistency as well as durability and availability
poses new challenges.

Our focus is on ensuring the consistency of replicas even if an adversary would have root access
on all machines. To address this problem, we introduce trusted consensus. To implement trusted
consensus, trusted execution environments are insufficient since the do not prevent, e.g., Sybil
attacks. We show how to ensure trusted consensus with the help of monotonic counters and
local election.

As contributions, we introduce efficient monotonic counters based on Replay Protected Memory
Block (RPMB) to ensure sufficient performance, make a succinct performance comparison of
fresh and worn out Trusted Platform Module (TPM) against RPMB monotonic counter update and
read rate, showing a very significant latency improvement. We show how to implement a local
leader election on top of monotonic counters to protect against Sybil attacks. We ensure the
consistency of the consensus log with the help of the monotonic counters. Further, we quantify
the overheads introduced by our solution. We use a native replication setup to serve as baseline.

644. Architecture
64.2. Overview

We use RAFT as our consensus protocol [29]. To provide trusted replicated storage, we employ
an architecture comprised of Docker containers powered by SCONE images and therefore with
binaries that run inside SGX enclaves. Each RAFT instance is coupled with an individual embed-
ded multimedia card device (eMMC). We implement policies to assure that a single eMMC client
will be able to communicate with the eMMC device. Additional instances will no longer continue
once they detect another working instance coupled with the device. Chosen instances then par-
ticipate in a consensus algorithm cluster, namely a RAFT cluster. As participants of that cluster,
the container instances copy and execute commands given by RAFT’s cluster leader. Because of
that, they work as replicas of that global leader.

The threat model under which RAFT has been developed does not consider the possibility that
non-volatile memory records are not trusted. Because of that we change RAFT's protocol to also
rely on RPMB’s monotonic counters and avoid being rolled back. Moreover, with the help of
a SCONE policy, we ensure that the components transparently attest each other: only entities
belonging to the same application, executing the code specified in the policy inside of a TEE,
can communicate with each other.

To demonstrate our solution, we implemented a typical database as a service application. For
that, we run a DQLite instance, a database management system based on popular SQLite but that
packs a RAFT implementation (C-RAFT) to create an automatically replicated database service.

6..21. Trusted Storage and Clock

Storage: With a once-in-a-lifespan programmed key, a client application requests an update
to the starting monotonic counter value provided by the RPMB, hereon referred to as x, when-
ever a new write is done. Naturally, the client application, when in unbuffered mode, will not
commit the transaction before getting an acknowledgment message from the RPMB server. The
application keeps a copy of &, c¢(k). That ¢(x) is later used to check for data integrity.

Notice that the last step is necessary because the eMMC server is a binary that is installed in
an untrusted environment and could be tampered with. One attack we predict is to simply drop

EG aT Dty Version 2 52 /

write requests. In the eMMC protocol, acknowledgement messages are not authenticated, mean-
ing that they could be crafted and spoofed by the adversary. Reads, in the other hand, are HMAC
and nonce protected. HMACs are hash-based message authentication code, so it cannot be fal-
sified, and nonces are single-use numbers used in the request, so it cannot be replayed.

Clock: In the local election, timeout plays a very important role. The consequence of that in
the context of trusted computing is that the safety property we propose, that is, there is only a
single instance that could operate a single eMMC device, can be invalidated by a powerful user.

To tackle that problem, we utilize an enclave-interval timer that securely measures non-
interrupted time intervals inside a TEE enclave, such as in SGX, based on T-lease, a trusted lease
primitive [33]. This provides a bounded, short-term trusted clock. Whenever the enclave code
loses context, the time spent outside of the enclave will be nullified and the source of time will
be verified when entering the enclave again.

The enclave-interval timer uses the TSC (x86 Timestamp Counter) register to count cycles while
inside the enclave. Verifying the cycle rate is possible by observing the RDRAND instruction rate,
which is independent of CPU frequency.

Our approach inherited a few factors from T-lease that affect accuracy. Although admittedly,
this approach has a certain variance compared to untrusted clocks, it keeps its safety quality -
a clock may have an abnormal rate within bounds that never damage our program.

6..2.2. Isolation

As mentioned in subsection[6.1.2] only one client could operate on an eMMC at a time to guaran-
tee that messages cannot be dropped by a maliciously modified eMMC server. We also state that
this is necessary to prevent an adversary from achieving a majority by maliciously instantiating
multiple enclaves. However, in the context of an untrusted cloud environment, the control over
enclave instantiation is beyond our power.

That attack consists of manipulating a newly instantiated container configured to access the
same eMMC device as the targeted container. When the targeted container writes to the RPMB
partition in the eMMC device, calls to the subsequent read, that confirms the write, get dropped
by the attacker. Then, the new container is induced to make a write to the same address (the
adversary could spam to every block to make sure the write is successful). Then the read is
unsuccessful.

In this context we had to enforce the single enclave instance per eMMC device policy. The algo-
rithm starts by requesting a read of the RPMB monotonic counter x. The container waits for 1
term, an adjustable length of time tuned for performance. Then, it reads « again. If x has been
incremented, then another enclave is running the algorithm and is currently at a later step. Be-
cause this algorithm tries to emulate a First Come, First Served policy, this makes this enclave give
up and terminate itself. Otherwise, if the value of « is still the same, it writes its own randomly
generated, collision resistant identifier in the Election Block of the RPMB storage partition. This
is a block we reserve for this election algorithm. The enclave then waits for another term, and
reads the contents of the Election BlocR. If it still contains the same id, it declares itself the local
leader and proceeds with operations. If another id is found, it gives up and terminates, again.
At least every one term, the leader checks whether its id is still written in the Election Block.

To assess the correctness of this algorithm, let's assume there are two leaders a; and as. In
that case they must both have read the Election Block and read their own ids, since the ids are
assumed to be collision resistant, and if some id; # idy = idy > ids Vidy > id;. They are also
both expected to have written their ids to the Election Block, when they arrived at state 3. They
then both wait for 1 term (6,), with trusted clocks. If a» wrote after a4, then a; should read first
and, given an unfavorable id comparison, terminate. In order for a5 to read its own id, it must
read after ;. Given both wait for 4;, it would imply that §; > &;, which is absurd.

The main design goals of this election algorithm are to preserve safety and incur in minimal
overhead. To that end, we have also implemented a measure for less adversarial scenarios.
We call it election by connection, and it consists of enclaves simply attempting to get hold of
the single connection socket available in the eMMC Server. The untrusted server should reject
further attempts to connect and their originating enclaves will terminate.

EG aT (YA Version 2 53 /[69]

6..2.3. Trusted Replication

We use trusted consensus to ensure the consistency of data. Each participant of the consensus
protocol has access to a monotonic counter. Consensus - using either a crash or Byzantine failure
model - can be attacked in the same way as the eMMC devices: an adversary can spawn multiple
instances of each participant. In this way, an adversary can force a divergence of consensus
protocol by virtually partitioning a system as each partition would look like a majority partition.
Thus, data replicated with the help of consensus can become inconsistent.

We address the Sybil attack cited above by ensuring that each participant must be a local leader
- as explained in section We use RAFT as our consensus protocol which is designed for
crash failures. RAFT itself also performs elections to elect one of its participants (aka instances)
as the global leader, and we call the RAFT elections also global elections.

The RAFT protocol tolerates messages being deliberately and indefinitely dropped by an adver-
sary that controls the world external to the participants themselves. However, RAFT being based
on a crash failure model, trusts its log contents, i.e., the storage is considered trusted. Thus, we
protect the log against rollbacks.

We use the RPMB partition as an anti-rollback mechanism. Writing to RPMB storage triggers an
increase in its monotonic counter x. With « increased, the RAFT participant container can write
its new log entry m, along with a copy of &, say, c(x,), being n the current size of the log, and
some signature of these contents using a key only available to the enclave, e.g. a keyed Hash
Message Authentication Code (HMAC), hereby denoted o(m, c(k,,)). This 3-tuple is, at principle,
enough to prevent rollback attacks. The adversary cannot prevent the enclave from verifying
whether the ¢(k,,) and m in the last entry match both o(m, ¢(x,,)) and .

That straight forwards solution would suffice, if it were not for RAFT's policy of removing un-
committed minority entries. At first glance, changing RAFT's policy to write-then-delete in this
case would always prevent x > ¢(x,) from happening. However, there are two problems with
this approach. First, there will be a small window of time of an incorrect log index in both RAFT
message exchange and receiver’s state, between writing and deleting. Second, the intuitive rule
that no gaps should appear in the logs is no longer enforced.

We avoided changes in RAFT's behaviour by writing to RPMB instead of to the log itself. Specif-
ically, being ¢ its commited index, the participant having its entries evicted would write its last
committed entry ¢(x,) and its second next monotonic counter copy i.e., ¢c(kn+2) to a dedicated
RPMB block, in what we call a pre-deletion saved state. The value in ¢(x,) prevents any further
entries from being evicted, than the ones that are not present on the new leader, since it is the
same value as in the latest committed entry. The next monotonic counter copy keeps consistency
with «, preventing new entries from being rolled back. Notice that 2 is added to ¢(x,,) because
the write of the pre-deletion saved state, itself, increments « by 1. The writing of the next new
entry will further increment it by 1.

This presents the opportunity to an attacker to remove older entries on the log, since there is
no mechanism to track continuity of the c(x1), c(k2), c(k3), ..., c(k,) S€quence on the log. Such
discontinuity could be caused by regular RAFT operations or by attackers, indistinguishably. Ex-
isting recorded entries with the right ¢(x) can also be introduced to the log.

To remedy that problem, we have added a new field to the log entries. It stores the previous c¢(x).
In a typical case, this field will simply hold the previous entry’s ¢(x,,_1). When a gap forms due to
entries being evicted, the new field receives the pre-deletion saved state values for previous c(x)
and current ¢(x). The previous c(x) must match the last entry’s ¢(k,,), forming a “bridge” in the
gap. With this, gaps still exist on the current c(x) sequence, but when they happen, the previous
c(x) value in the newer entry must match the current ¢(x) in the older. In summation, for some
entry j, being ¢/ (x) previous c(x), such that ¢(x;) + 1 # ¢(k;41), it must be that ¢/(k;41) = ¢(k;).
Any entries not attending to these requirements constitute evidence that entries in the log have
been removed.

64.3. Results

EG aT DYWA Version 2 Sk /

—i

— =

100000 150000 200000 250000 300000

Latency (microseconds)

50000
Il

——

0
1

T T T T T T
RPMB-W RPMB-R TPMf-W TPMf-R TPMw-W TPMw-R

Figure 6.1. RPMB x fresh and worn out TPM NVRAM monotonic counter - Latency distribution for reads and
writes

6.41.31. RPMB as a Source of Trust

In this section we demonstrate that the RPMB partition, present on eMMC storage units, yields
better practical results in relation to standard TPM NVRAM in regards to the utilization of mono-
tonic counters.

6.1.3.2. Writing Latency Evaluation

Figure [6.1 visually demonstrates a distinct difference in performance between the three exper-
imental units. We have used an early to mid-life TPM model with some 400.000 updates to
represent the worn-out performance.

Notice that the mean latency for RPMB writes is down to 4x lower than that of a fresh TPM,
despite the sparser distribution. Compared to an unit at approximately half life that ratio goes
to over nearly 15x.

In addition, TPM’s monotonic counters become unusable at about 106 updates, while RPMB mem-
ory becomes read-only when its monotonic counter reaches 232 — 1. At a rate of approximately 1
update per 20 milliseconds, one RPMB module would yield about 2.72 years of lifespan, greatly
surpassing TPMs in speed and specially longevity.

6.1.3.3. Reading Latency Evaluation

Figure [6.1] shows that the latency performance difference is even more accentuated on reads of
the monotonic counter than on writes. Much of the difference can be explained on the basis
that updating its monotonic counter implicates on writing to a block on RPMB, while reading
that monotonic counter consists in retrieving a Flash memory stored 32 bit integer. On Table[6.1]}
it can be seen that reads of the monotonic counter are over 20x faster on RPMB. Taken the worst
case to account, the ratio reaches 22:1 in favor of RPMB.

6.1.3.4. Trusted Replication

The main goal in our Trusted Replication evaluation is to quantify the costs of adoption of our
architecture. To that end, we execute custom benchmarks in order to discuss which factors
impact its performance. We evaluate how latency scales as the number of replicas increases, so
we can derive a ratio that relates the costs asymptotically.

Our experimental units are a native, a SCONE-only, a SCONE-only without parameter adjust-
ments, and the Trusted Replication variants. The Trusted Replication variant is the complete

EG aT Dély Version 2 55 /

o
o
=]
—
o * Native
8 x Default SCONE
’%\ A Adjusted SCONE
S Rollback Resistant
(5]
2 8-
3 ©
Q N "
é o X
o - %
g <
c
i
S |
- o U ——
S 4
N R —
o -
T T T T T ; :
1 2 3 4 5 6 7

Participants

Figure 6.2. Trusted Replication Latency - retrieve performance for large queries

solution, including RPMB enforced rollback protection and adjusted SCONE parameters.
6.1.3.5. Retrieving

We have chosen a memory access and buffering intensive benchmark in the form of a series of
large retrieve queries. The objective was to pressure memory access inside enclaves and verify
how memory reads would affect latency.

Figure shows the average latency for Select statement queries that match about 14000 rows.
Loading the query results to the client application was included in the benchmark. It demon-
strates that as the number of participants increases, little difference can be seen on latency.
That is to be expected, since retrieve operations do not trigger RAFT operations, and are rather
executed on the leader node. Conversely, it is somewhat surprising to notice the upwards slope
in response time between 1 and 3 participants. We believe that is caused by the activation of
C-RAFT'’s routine operations when multiple nodes are detected in the cluster.

Since rollback-resistant mechanisms are not triggered on Select statements, which make up this
benchmark, difference between the Rollback Resistant variant and its Adjusted SCONE counter
partis marginal. The results in comparison with the native variant have stayed within 20%, which
is considered to be satisfactory for our objectives.

6.1.3.6. Updating

Updating should pressure memory, network I/O and storage 1/0. Our benchmark consists of a
10000 row update operation. Figure[6.3]shows each variant's mean latency.

The Rollback Resistant variant stayed within 10% of the Adjusted SCONE variant, with not much
more than the expected 205 RPMB update penalty in difference, showing that for this kind of
long update query our solution presents acceptable overheads.

In relation to Native, the Adjusted SCONE variants had nearly 2x latency for this benchmark. We
attribute that difference to the increase in memory writes, known to cause high overhead in
SCONE.

Above 3 participants, the Default SCONE parameters variant would run out of memory, or exhibit
unexpected behaviour and fail to finish the operation. We believe that the deficiency in balance
between 1/0 threads and enclave threads may be causing buffers to grow for too long, exhausting
enclave resources.

64.3.7. Insertion

Our insertion benchmark differs from the previous ones, in that it is composed by some 20000
insert queries, instead of one large query. It intends to overwhelm /O operations, so the
deficiencies of SCONE and RPMB can be better isolated. Figure [6.4 show the mean latency for
executions of this 20000 queries benchmark.

EG aT A Version 2 56 /

o
o
=]
—
o * Native
S % Default SCONE
g A Adjusted SCONE
g x Rollback Resistant
3]
381"
3 ©
2
Q
Eo
S 4
3
c
g S P :
d o | A
S 4
«
o 4
T T T T T T .
1 2 3 4 5 6 7

Participants

Figure 6.3. Trusted Replication Latency - update performance for large queries

* Native

% Default SCONE

A Adjusted SCONE
Rollback Resistant

80000
1

60000
1

40000
1

Latency (microseconds)
X

20000
1

0
|

Participants

Figure 6.4. Trusted Replication Latency - Insertion performance

The penalty RPMB updates cause visibly accumulates in this benchmark. Resistant Rollback per-
formance ranges at about twice that of the Adjusted SCONE variant and stays below unadjusted
SCONE. The |/0 intensive nature of this benchmark seems to better match SCONE's default con-
figuration than the previous ones.

In general, the difference between native and the Adjusted SCONE is about 5x, showing that TEE's
need further, more tailored parameterization to be effective in high 1/0 scenarios.

6.2. FPGA Fault Tolerance

Field-Programmable Gate Arrays (FPGAs) are computational devices known for their energy ef-
ficiency in comparison to instruction set architecture (I1SA)-based devices like CPUs and GPUs.
Multiple works in the literature have shown the energy efficiency of FPGAs. For instance, a re-
cent studies have demonstrated that the FPGA implementation of a Gaxpy kernel is an order
of magnitude lower in terms of power consumption, while also being very competitive in terms
of performance. However, FPGAs are also more challenging for application development. The
workload to be executed has to be converted into a set of bits containing the information about
the configuration of its logic cells, Block RAM, etc. Originally, this had to be done by developing
the application in hardware description languages like VHDL.

Fortunately, there are now tools like Vivado High Level Synthesis (HLS) which allow de-
veloping for such devices in high level languages. Also, frameworks such as OmpSs@FPGA [9]
make it even more straightforward and do most of the extra work needed to develop and build

EG aT Dé.ly Version 2 57 /

FPGA applications. Because of this, heterogeneous systems with FPGAs are becoming increas-
ingly popular and are being considered as accelerators for supercomputers in high-performance
computing (HPC). One of the best examples of this is the porting of HPC applications such as our
Smart City use case (Alya) into FPGAs (See Deliverable 5.4).

However, HPC applications run for long periods of time and are subject to failures and errors.
Thus, it is important to protect those applications (e.g., Alya) with fault tolerance techniques to
be able to tolerate those errors and avoid wasted time. In our previous report (See deliverable
4.3 Section 6.1) we reported the porting of Alya with FTI to profide fast and efficient multilevel
checkpointing. The porting was implemented, integrated and tested in the Marenostrum Super-
computer at the BSC. D4.3

In addition to that, we have implemented FPGA checkpointing with the same interface as we
previously implemented GPU checkpointing, We use the multilevel checkpointing library FTI and
its APl to be able to transparently checkpoint FPGA applications. This work is reported in our
Deliverable 3.4. link between WP4 and WP3

In this way, we connect the achievements previously reported in this WP4, with the efforts done
in WP5 and WP3 to connect all the dots, and achieve a universal fault tolerance technique (FTI)
capable of supporting multiple heterogeneous devices (i.e., FPGAs and GPUs) and demonstrate
its effectiveness with a real use case (Alya) that has been ported to new acccelerators.

EG aT A Version 2 58 /

7. Conclusion

The compiler tools developed in LEGATO were integrated with the front-end components de-
veloped in Work Package 4. We studied how to exploit the task-based programming model of
OmpSs to assist the dataflow development process when using Maxeler's MaxCompiler. We pre-
sented a number of enhancements done on XiTAQ's data parallel interface. We also analysed the
performance impact of running a few typical LEGaTO functions with OmpSs inside SGX enclaves.
We also provided more details on the plug-in we developed for integrating OmpSs development
interface into Eclipse Che.

In the Dataflow Engines field, we concluded the work on DFiant and we reported an evaluation
of its programmability. As stated above, the work on integrating Maxeler’s interface with OpsSs
was reported in the compiler section.

Concerning energy efficiency, we proposed two new studies we deemed important in the con-
text of LEGaTO and its aplications. The first study evaluates the energy efficiency and the perfor-
mance impact of loT applications when ruuning inside Arm’s TrustedZone. The second study pro-
poses a method for taking energy consumption into account when adjusting machine learning
hyperparamenters. The first study allows for understanding the energy cost of running trusted
applications, while the second study allows for finding tradeoffs of energy and performance.

We completed this deliverable with a chapter on security and fault-tolerance aspects. For se-
curity, we present our novel research results in obtaining consensus with the help of trusted
execution environments. We also describe how the fault-tolerant interface deceloped in the
project can be used with FPGAs, with a reference to the more details given in Deliverable D3.4.

All in all, this document describes the work undertaken in Work Package 4 towards the end of
the whole project. Our main interest was to complete, evaluate and report the final efforts on
integrating all components. We were nevertheless able to produce new research outputs during
the period, on both energy efficiency and security aspects.

EG aT Dé.ly Version 2 59 /

8. References

[1] VHDL Code for Bitonic Sorter. https://vlsicoding.blogspot.com/2016/01/
vhdl-code-for-bitonic-sorter.html, January 2016.

[2] Full VHDL code for Moore FSM Sequence Detector. https://www.fpgasstudent.com/
2017/09/vhdl-code-for-moore-fsm-sequence-detector.html, September 2017.

[3] 20 Newsgroups. http://gwone.com/~jason/20Newsgroups, 2020. Accessed: 2020-14-
09.

[4] Conan, the C/C++ Package Manager. https://conan.io, 2020. Accessed on 29.10.2020.
[5] Eclipse Che. https://www.eclipse.org/che/, 2020.

[6] Hpc challenge benchmark. http://icl.cs.utk.edu/hpcc/, 2020 (accessed October
29, 2020).

[71 Ahmad Aghaebrahimian and Mark Cieliebak. Hyperparameter tuning for deep learning in
natural language processing. In Mark Cieliebak, Don Tuggener, and Fernando Benites, edi-
tors, Proceedings of the 4th edition of the Swiss Text Analytics Conference, SwissText 2019,
Winterthur, Switzerland, June 18-19, 2019, volume 2458 of CEUR Workshop Proceedings. CEUR-
WS.org, 2019.

[8] Arm Limited. ARM Security Technology: Building a Secure System using Trust-
Zone Technology. http://infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf, April 2009. Accessed on 30.07.2019.

[9] Barcelona Supercomputing Center. OmpSs@FPGA. https://pm.bsc.es/
ompss-at-fpga, December 2020.

[10] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti. Trusted computing meets
blockchain: Rollback attacks and a solution for hyperledger fabric. In 2019 38th Sympo-
sium on Reliable Distributed Systems (SRDS), pages 324-333, 2019.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and
Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of
the 2009 IEEE International Symposium on Workload Characterization, 1ISWC 2009, October
4-6, 2009, Austin, TX, USA, pages 44-54. IEEE Computer Society, 20009.

[12] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryptology ePrint Archive,
2016(86):1-118, February 2017.

[13] Jason Jinquan Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang Wang, Xianyan Jia,
Cherry Li Zhang, Yan Wan, Zhichao Li, Jiao Wang, Shengsheng Huang, Zhongyuan Wu, Yang
Wang, Yuhao Yang, Bowen She, Dongjie Shi, Qi Lu, Kai Huang, and Guogiong Song. Bigdl: A
distributed deep learning framework for big data. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019, pages 50-60. ACM,
2019.

[14] Geir Drange. Ultimate CRC. https://opencores.org/projects/ultimate_crc, Jan-
uary 2016.

[15] Felix A. Gers, Jirgen Schmidhuber, and Fred A. Cummins. Learning to forget: Continual pre-
diction with LSTM. Neural Comput., 12(10):2451-2471, 2000.

[16] GlobalPlatform, Inc. TEE Sockets API Specification Version 1.0.1, January 2017.

[17] Christian Gottel, Pascal Felber, and Valerio Schiavoni. iperfTZ: Understanding Network Bot-
tlenecks for TrustZone-Based Trusted Applications. In Mohsen Ghaffari, Mikhail Nesterenko,
Sébastien Tixeuil, Sara Tucci, and Yukiko Yamauchi, editors, Stabilization, Safety, and Secu-
rity of Distributed Systems, pages 178-193, Cham, 2019. Springer International Publishing.

EG aT Dty Version 2 60 /

https://vlsicoding.blogspot.com/2016/01/vhdl-code-for-bitonic-sorter.html
https://vlsicoding.blogspot.com/2016/01/vhdl-code-for-bitonic-sorter.html
https://www.fpga4student.com/2017/09/vhdl-code-for-moore-fsm-sequence-detector.html
https://www.fpga4student.com/2017/09/vhdl-code-for-moore-fsm-sequence-detector.html
http://qwone.com/~jason/20Newsgroups
https://conan.io
https://www.eclipse.org/che/
http://icl.cs.utk.edu/hpcc/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://pm.bsc.es/ompss-at-fpga
https://pm.bsc.es/ompss-at-fpga
https://opencores.org/projects/ultimate_crc

[18] Christian Gottel, Pascal Felber, and Valerio Schiavoni. Developing Secure Services for loT
with OP-TEE: A First Look at Performance and Usability. In José Pereira and Laura Ricci,
editors, Distributed Applications and Interoperable Systems, pages 170-178, 2019.

[19] Homer Hsing. AES Core Specification. http://opencores.org/usercontent, doc,
1354351714, 2013.

[20] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/m-
nist/, 1998.

[21] Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun. com/exd-
b/lenet, 20:5, 2015.

[22] Yuxi Li. Deep reinforcement learning: An overview. CoRR, abs/1701.07274, 2017.

[23] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and lon
Stoica. Tune: A research platform for distributed model selection and training. CoRR,
abs/1807.05118, 2018.

[24] David Lundgren. Double Precision Floating Point Core VHDL, 2014.

[25] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Re-
current neural network based language model. In Takao Kobayashi, Keikichi Hirose, and
Satoshi Nakamura, editors, INTERSPEECH 2010, 11th Annual Conference of the International
Speech Communication Association, Makuhari, Chiba, Japan, September 26-30, 2010, pages
1045—1048. ISCA, 2010.

[26] Dmitry Molchanov, Arsenii Ashukha, and Dmitry P. Vetrov. Variational dropout sparsifies
deep neural networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 Au-
gust 2017, volume 70 of Proceedings of Machine Learning Research, pages 2498-2507. PMLR,
2017.

[27] Christina Miiller, Marcus Brandenburger, Christian Cachin, Pascal Felber, Christian Gottel,
and Valerio Schiavoni. TZ4Fabric: Executing Smart Contracts with ARM TrustZone. In 2020
IEEE 39th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2020.

[28] Kevin E Murray, Mohamed A Elgammal, Vaughn Betz, Tim Ansell, Keith Rothman, and
Alessandro Comodi. Symbiflow and vpr: An open-source design flow for commercial and
novel fpgas. IEEE Micro, 40(4):49-57, 2020.

[29] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.
In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14), pages 305-319, 2014.

[30] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Van-
derPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Edouard Duchesnay. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:2825-
2830, 2011.

[31] Volnei A Pedroni. Generic Priority Encoder from Digital electronics and design with VHDL.
Morgan Kaufmann, 2008.

[32] Marcelo Samsoniuk. DarkRISCV: Opensource RISC-V implemented from scratch in one night!
https://github.com/darklife/darkriscv, 2019.

[33] Bohdan Trach, Rasha Fageh, Oleksii Oleksenko, Wojciech Ozga, Pramod Bhatotia, and
Christof Fetzer. T-lease: a trusted lease primitive for distributed systems. In Proceedings of
the 11th ACM Symposium on Cloud Computing, pages 387-400, 2020.

[34] Osman Unsal. Architecture definition and evaluation plan for legato’s hardware, toolbox
and applications. Technical Report SD1, LEGaTO Project, August 2018.

[35] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017.

EG aT Di. Version 2 61 /

http://opencores.org/usercontent,doc,1354351714
http://opencores.org/usercontent,doc,1354351714
https://github.com/darklife/darkriscv

[36] Xilinx, Inc. Vivado Design Suite User Guide: High-Level Synthesis.

[37] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolu-
tional networks for classification and detection. IEEE transactions on pattern analysis and
machine intelligence, 38(10):1943-1955, 2015.

EG aT A Version 2 62 /

	Executive Summary
	Introduction
	Compiler support and Development Environment
	Task graph analysis
	Project goals
	Useful acceleration information
	Acquiring program traces
	Testing
	Limitations and future work

	Enhanced XiTAO Data Parallel Interface
	The Asynchronous Data Parallel Mode
	The Synchronous Data Parallel Mode
	Evaluation of the Alya solver

	OmpSs Integration with SGX
	IDE Plugin
	Eclipse plugins
	Eclipse Che integration
	Working with OmpSs in Eclipse Che
	Conan-based installations

	Dataflow engines
	DFiant Evaluation
	Programmability
	Performance and Other Metrics

	Integration with OmpSs

	Energy-Efficiency
	Energy-efficient IoT Applications
	Networking in ARM TrustZone
	Executing Smart Contracts in ARM TrustZone
	Achievements

	Energy Efficiency Through Deep Learning Parameter Tuning
	Problem statement
	Implementation
	Evaluation

	Security and Fault-Tolerance
	Trusted Consensus in Untrusted Environments
	Architecture
	Overview
	Results

	FPGA Fault Tolerance

	Conclusion
	References

