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1 Executive Summary 

The main focus of Workpackage 5 is the development and optimisation of different real use cases 

with the help of the LEGaTO workflow. The final development and optimisation status is reported 

within this deliverable. There are five different use cases  

1. Smart Home 

2. Smart City 

3. Infection Research 

4. Machine Learning  

5. Secure IoT Gateway 

All of them except the latter have been optimised using one of the toolflows that the LEGaTO 

project provides. OmpSs was extended to make use of additional compilers and runtimes as 

described in chapter 8, so the use cases didn’t have to implement all of them in a different way. 

The Smart Home use case concentrates on a Smart Mirror demonstrator of which three versions 

have been developed within the project. A first demonstrator was built, after that, a second 

enhanced demonstrator was built with many manual improvements that have been carried out, also 

better standard hardware was used. Finally, the third demonstrator was built, based on the 

developed LEGaTO edge server, increasing the energy efficiency (measured in FPS/Watt) by 12x. 

The Smart City use case simulates the air quality in urban areas. Existing code has been ported from 

Fortran90 to C, now running on x86 as well as ARM64 architectures. An implementation on an FPGA 

has been developed, showing an energy efficiency increase by a factor of 9, measured in 

GFLOPS/Watt. A further implementation on an Nvidia Xavier microserver was developed, 

increasing the energy efficiency by 95x (GFLOPS/Watt) at a cost of an 11x slowdown (wall time in 

seconds), compared to a BSC Marenostrum4 node. A full-size simulation run takes a total amount 

of ~1.3 kWh of energy, but as it runs multiple times a day with new input data, there is a lot of 

optimisation potential. 

The Infection Research use case uses statistical methods to research on the effectiveness of drugs, 

vaccination strategies and harmfulness of pathogens. The major problem of this use case are the 

extremely long runtimes. To reduce this, four major compute kernels were identified and optimised, 

resulting in a wall time (in seconds) speedup of 10x, 40x, 544x and about 2503.6x for these kernels. 

Also, the total energy consumption in Joule for each compute kernel was measured and compared, 

resulting in a maximum energy efficiency increase of 7708.8 x. A full run with a real dataset using the 

initial version of the biomarker candidate subset selection would take more than 1.5 years and 

consume around 187 kWh, so there is a huge potential in both, speed and energy efficiency 

improvements. 

The Machine Learning use case on the one side develops neural networks with a focus on 

automotive usage, but also optimises existing neural networks with a new kind of deep learning 

optimisation tool called EmbeDL. With the help of EmbeDL, well known neural networks could be 

optimised to reach an average speed up of 4.3x (FPS) and energy efficiency increase by 6.3x 

(measured in inferences per Joule). 

The Secure IoT Gateway makes it easy to secure many types of network connections to and from 

IoT devices. It bases on well-established technologies like OpenVPN, OPNsense and OpenWrt and 

adds an easy to use configuration Web GUI and rollout mechanisms on top of it. As analysis of the 

used components did not reveal any optimisation possibilities for computation speed or energy 

efficiency, this use case was used to enhance the security for the Smart Home use case. 
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Almost all targeted improvements in the six targeted disciplines energy efficiency, MTBF, code base 

security, designer productivity, TCO/costs and latency were reached, please see Table 17 in the 

Conclusion section.  
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2 Introduction 

This document presents the final state of the implementation, optimisation and measurements of 

improvements of the LEGaTO use cases, representing the work carried out in Work Package 5 as 

shown in Figure 1. 

 

Figure 1: WP5 and the LEGaTO stack 

In general, the four use cases of Smart Home, Smart City, Infection Research and Machine Learning 

have the goal to improve in terms of diverse metrics, such as energy efficiency, as mentioned below 

– while the Secure IoT Gateway focusses on adding extra security to other use cases. To improve on 

the diverse metrics, the use cases have been deeply analysed for their requirements and 

computational characteristics as presented in the first deliverable D2.1 [1]. Based on that, in D5.2 

[2] baseline measurements and first optimisations of the use cases were presented, most of them 

could be massively improved and extended in this document. This deliverable is accompanied by 

D5.4 [3], the “Report on evaluation of efficiency and TCO improvements of use-cases” in which a 

detailed analysis of the efficiency and TCO improvements of all use cases is given. 

Some use cases have been firstly optimised by hand, e.g. by porting it to a different programming 

language or by improving the algorithms itself. These optimisations showed already good results, 

e.g. in the Smart Mirror demonstrator of the Smart Home use case. As a second step, the already 

hand optimised algorithms were then improved by using one of LEGaTO’s main programming 

models, compilers and runtimes: OmpSs, XiTao, DFiant, MaxJ as well as SCONE. 
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The optimisation targets of LEGaTO that we are targeting for are the following, as already depicted 

in D2.1 and D5.2: 

1. Improve Energy Efficiency 
2. Increase MTBF (by 5x) 
3. Increase code base security (by 10x) 
4. Increase designer productivity (by 5x) 

In addition, we also consider the following objectives. These are not explicitly stated as objective in 

the DoA but are also relevant:  

5. Reduce TCO/costs 
6. Reduce Latency 

The use cases were optimised using these programming models, compilers, runtimes and 
optimisation objectives: 

Programming Model 
Smart 
Home 

Smart     
City 

Machine 
Learning 

Infection 
Research 

OmpSs, XiTao, DFiant 1,4,5,6 1,2,4,5 1,4,5,6 1,4,5 

MaxJ     1,4,5 

SCONE    3 
Table 1: Implemented optimisations and used programming models for the use cases 

The structure of this document is quite simple, as every use case has its own chapter. In each 

chapter, a short introduction of the specific use case is given, followed by description of the 

optimisation process and measurements to show the improvements.  

In case of the Secure IoT Gateway, the four main components and their features are described, as 

well as some benchmarks under different conditions and loads. Furthermore, the integration into 

two different locations of the Smart Home use case is described. 

An important part of the project was the overall integration, showing that the used and improved 

LEGaTO frameworks could be used in the use cases, and are making use of the existing and newly 

developed heterogeneous hardware. This overall integration work is described in chapter 8. 

The document finalises with a conclusion. 
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3 Smart Home 

Current smart living environments are based on the simple automation of subsystems consisting of 

sensors, information processing, and actuators. New approaches are mainly driven by large 

enterprises, pushing big-data approaches, collecting as much information about the user as possible 

to derive the current action, and anticipating future behaviour. The development of assisted living 

can be seen as a move from isolated applications realized as simple embedded systems, towards 

cyber-physical systems gathering and processing large amounts of data from a high number of 

distributed smart devices. Additionally, the smart home must process interaction of different users 

simultaneously; conflicting actions have to be recognized (e.g., one user opening a window and 

another one closing it again) and compromises can be suggested. Different interaction schemes can 

be combined adaptively, e.g., switching from touch to speech interaction while cooking or using 

text-based output while phoning. Providing this functionality is highly computationally intensive. 

Since the collected data contains personal and highly sensitive information, cloud-based processing 

is undesirable. To address these privacy issues, we target resource-efficient edge computing. 

In smart home environments, the smart mirror is a more and more frequently used interface for 

interaction. It is based on a display with a semi-transparent foil applied on it. This device shows 

personalized information and enables controlling of other smart components and services, e.g., 

operating the automated wardrobe, turning on/off the lights or opening/closing the entrance door. 

For this use case a demonstrator based on the open source project MagicMirror² [4] is developed 

and extended with the most needed features of smart homes. These include face recognition, object 

recognition as well as voice and gesture control. All developed modules are published open-source 

on GitHub [5].  

 

Figure 2: Used Tools in the smart home use case of the LEGaTO stack 
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Figure 2 shows the LEGaTO Tools used in this use-case. These are OmpSs with the Mercurium 

compiler and the Nanos environment and the hardware developed in this project. With this the 

energy efficiency is increased by factor 12 and compared with other implementation frameworks 

(MPI) the designer productivity was greatly increased. 

3.1  Hardware evaluations and performance analysis with YOLO and Darknet 

Multiple features of the smart mirror are based on the neural network called YOLO. It is a commonly 

used network for object detection. In the mirror application, two instances of this network recognize 

around 80 objects and 32 hand gestures. Therefore, it can be used as an indication for possible 

performance and hardware requirements. In this chapter, the performance on different hardware 

architectures is evaluated in regards to FPS and power consumption of running a single instant of 

YOLO for object detection. This is visualized in the following graph (see Figure 3) for NVidia TX2, 

Xavier embedded modules and GTX 1080Ti or RTX 2070 GPUs. In the prototype used Intel 

RealSense supports a maximum framerate of 30 FPS and is therefore marked by the red line. To 

measure the maximum performance on the GPUs, a video was used. The GTX 1080Ti runs one 

YOLO instance with 30 FPS and 160W power consumption with the RealSense being the bottleneck. 

With a video around 54 FPS are reached, but the power consumption is increased to 210W. This is 

way too much performance and power consumption for an embedded hardware solution. The 

introduction of tensor cores on the RTX 2070 shows a possible solution for this. While bound by the 

RealSense 30 FPS about 90 W are reached. The maximum performance of one YOLO instance is 64 

FPS and a power consumption of 128 W. If the tensor cores are not utilized, the maximum 

performance is reduced by 10 FPS, and the power consumption is increased by around 30 W. This 

demonstrates the potential of specialized hardware accelerators for neural networks. For possible 

embedded hardware solutions, NVidia TX2 modules are evaluated. With 13 W and 4 FPS the 

performance is not sufficient for the smart mirror use case. The NVidia Xavier module on the other 

hand shows a decent performance of 24 FPS at a power consumption of around 40 W in the max 

performance mode. The integrated tensor cores of these modules leveraged a possible embedded 

hardware solution. 
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Figure 3: FPS and Watt of Yolo running on TX2, Xavier, GTX 1080Ti and RTX 2070. The application is limited by the 
maximum output framerate (30 fps) of the Intel RealSense d435i (red line). 
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3.2  Smart Mirror Prototype Hardware Setups 

The smart mirror prototype is composed of a display with an applied 

semi-transparent mirror foil, a camera and a workstation. While first 

test was conducted with a small monitor and normal webcam, the later 

version of the demonstrator is utilizing an Intel RealSense and a big TV 

as a display. The RealSense was chosen for the featured depth images. 

These prototypes were also shown at several fairs to promote the 

LEGaTO project. At each workstation smart mirror prototypes, the 

overall application was distributed to two accessible GPUs, due to 

memory limitations on the GPU and to enhance the hardware utilization 

and user experience. On the embedded edge solution, complete 

processing parts are distributed over multiple microservers. 

3.2.1 The First Prototype 

The workstation for the first prototype was composed of two GeForce 

GTX 1080Ti GPUs and an Intel i7-7700K processor with 32 GB of RAM. 

On this setup the first version of the demonstration was running with 

around 12 FPS in all detections simultaneously (face, gestures and 

objects) and a power consumption of 650W. After porting the limiting 

python scripts to C or C++ with CUDA optimizations, especially for Intel 

RealSense camera handler, the performance was enhanced to 16 FPS for 

the three detections. This can be traced back to a high CPU computation, 

for example, due to image scaling in python. Tracking and other 

additional features were not yet implemented in this setup. After the 

evaluation of the RTX 2070 the first setup was discontinued for the last 

period. 

3.2.2 The Second Prototype 

The second prototype is composed of two GeForce RTX 2070 and an Intel 

i9-9900K with 32 GB of RAM. The introduction of Tensor Cores increased 

the performance to around 20 FPS for all three detections (face, gestures 

and object). At the same time, the power consumption was decreased to 

around 430W for the workstation. After additional optimization of the 

communication structure between the modules within the smart mirror 

application (number of image streams, partitioning) the performance 

was increased to 25 FPS for all detections. The latest features, like 

tracking, are added on this setup with minor performance reductions.  

 

 

 

Figure 4: The first prototype setup 

Figure 5: The second prototype setup 



 

  D5.3 Version 1.1 12 / 81  

3.2.3 Embedded Hardware Prototype 

As shown in the evaluation of the Darknet 

framework on different GPU hardware, several 

NVIDIA Xavier modules should be very well 

suited to run the mirror. The first embedded 

hardware setup consists of two AGX Xavier 

modules, which are interconnected via a PCI 

Express bridge. Therefore, one module is 

configured as an endpoint device and a virtual 

Ethernet connection is established. The 

bandwidth between those two modules is around 5 GBits/s with a roundtrip time of 1.5 ms. The 

Xavier modules are also one target architecture for the embedded edge server, but the performance 

of the virtual network within final edge server is expected to be much higher (around 40 GBits/s with 

a roundtrip time of < 1ms). Therefore, this setup can be seen as an intermediate step towards the 

final targeted hardware. The two modules have a combined maximum power consumption of 

100W. The complete smart mirror application is ported to this setup, and the functionalities are 

partially optimized to utilise the second module. Hereby a performance of 16 FPS was achieved in 

the simultaneous execution of all detections at an energy consumption of 55W.  

3.3 Smart Mirror Software Optimization Progress 

To improve the user experience and increase performance/energy efficiency, the data flow between 

the modules was changed, modules were reconstructed, and Kalman filters were introduced. These 

changes have improved the 

performance and reduced the 

power consumptions of the smart 

mirror demonstrator. Starting from 

about 12 FPS in each detection at a 

power consumption of 650W, the 

second iteration reaches 25 FPS at a 

power consumption of 430W on 

workstation hardware while all 

detections run simultaneously. 

Additional features have been 

implemented that increase usability 

and developer friendliness, such as a 

decision-maker who calls 

applications and displays content 

based on all information. Further 

optimizations and porting for 

embedded hardware made the 

mirror demonstration running on a 

single Nvidia Xavier module. Due to 

the high number of neural networks 

and computations, this single device 

is capable of running everything 

Figure 6: Dual Nvidia Xavier prototype setup 

Figure 7: General structure of the smart mirror application 
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with 6 FPS by a power consumption of 42 W. The bottleneck in running on a single module is the 

GPU, which was fully utilized while core computation was free. With the help of OmpSs@Cluster, 

the computation of the object and gesture detection including the tracking is sourced out to the 

second Xavier. Thereby the GPU of the first module is greatly reduced by the cost of a slightly higher 

CPU utilization. This setup is running the full smart mirror with all detection at 16 FPS in average 

with a power consumption of 55W. With this setup the targeted performance in FPS per Watt is 

higher than the targeted result. The result of the final embedded edge server can be estimated to 

be similar, as the Xavier modules will also be used and consume the majority of the energy. 

3.3.1 Module Reconstruction and Optimizations with C++ and Acceleration with 

CUDA 

Several modules were first implemented in python because it is the common language for neural 

networks, and therefore a fast development could be done. An efficient image processing was 

neglected at first. After the initial evaluation, the following improvements were made.  

• The main camera script, which prepares the RGB and the depth image, was ported to C++ 

and accelerations with CUDA were made. The CPU load has been reduced by 50% at the 

cost of a slightly increased graphics card load, which is designed for such image processing. 

This script provides the image to all other scripts via GStreamer appsink.  

• To greatly reduce latency, the image showing all detections is created within the camera 

script and handed over to the Magic Mirror Framework. This workflow also has also 

removed the need to merge images of each module and removed the need to send back 

images from each module. 

• Every neural network previously running on the smart mirror has needed a unique image 

resolution. In the first python version, this downscaling was also done by the CPU and 

before each inference and was thereby slow and inefficient. This was rewritten with GPU 

acceleration at a combined script. Some neural networks are also altered to use the same 

image resolution. Implementation via FPGA is desirable in the future. 

• The darknet framework is also written in C and uses its own image format. The flow of 

scaling and converting is next to be combined and optimized. 

• The first implementation of face recognition tried to identify each face in each image. This 

cost a lot of computation due to a large number of possible faces. By the introduction of the 

depth image this could already be reduced. By implementing tacking, faces do not have to 

be identified in every frame. In the current version, the identity is only checked once every 

second. This reduced the resource requirement enormously.  

These changes together with the introduction of tensor cores have increased the performance from 

around 12 FPS at the first prototype to 25 FPS on the second prototype. They were also applied to 

the mirror running on a single Nvidia Xavier module but have shown only 6 FPS. 

3.3.2 Offloading of detections with Darknet using OmpSs@Cluster 

Using OmpSs@Cluster, the computation of the object and gesture recognition is shifted from the 

system running the smart mirror application to an additional module. These modules are coupled 

via a network infrastructure and are using MPI as a backbone. In our case two Nvidia Xavier modules 

are coupled over a virtual Ethernet via PCI Express (see section 3.2.3). The general structure is shown 

in Figure 8. If only the object detection is examined, just the image conversion from the image 
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source into the format of the darknet library and the 

publication of the results is remaining on the first 

module. With the help of OmpSs@Cluster, the 

computation of the DNN and the tracking algorithm is 

entirely moved to the second module. All steps in this 

flow are separated into tasks, so all blocks can be 

executed in parallel, and the communication time is 

hidden. If only the execution of a detection alone is 

observed, the usage of the GPU is completely 

outsourced to the second Xavier module and the 

utilization of the CPU is increased a little bit. The 

performance in FPS remains identical to running it on 

a single node and is bounded by the throughput of the 

camera (30 FPS). Since the complete mirror 

application requires too much computing power from 

one module, the performance could be increased from 

6 FPS to 16 FPS in all detections simultaneously by 

shifting the object and gesture recognition to the 

second Xavier module. This has moved the bottleneck 

from the GPU of the first module to the CPU cores of 

the first module. Further outsourcing of CPU 

computations will increase the performance even 

more. A slightly higher power consumption due to the communication overhead, next to the 

increased power consumption due to having two Xavier modules, has to be tolerated. For a more 

detailed description, see Deliverable 3.4 section 4.2.3.3. 

3.4 Baseline Benchmark and Performance 

As the baseline for the entire Smart Mirror, the total power consumption and the achieved frames 

per second in all detections simultaneously are considered. All results are shown in the following 

three graphs (see Figure 9). The colour of all three graphs represents the three different hardware 

setups and the goal. The first graph shows the achieved FPS, and the second graphs shows the 

average power consumption after each optimizations step. The third graph shows the combination 

of the previous graphs to express the performance. Here higher is better. The initial prototype 

achieved a performance of 12 frames with a power consumption of 650 W. This results in a value of 

around 0.018 FPS/W. After the first optimizations and translation from python to C++ with CUDA 

16 FPS with a power consumption of 650W was achieved. This results in a value of around 0,024 

FPS/W. With the second hardware prototype and the introduction of Tensor Cores, the performance 

was increased to 20 FPS with a reduced power consumption of 430 W, which corresponds to a value 

of around 0.046 FPS/W. After modification of the communication infrastructure and a finer granular 

subdivision, the performance was increased to 25 FPS with the same power consumption. Thereby 

around 0.058 FPS/W is achieved. The efficiency was thus increased by factor 3 due to the 

optimizations carried out so far. The optimized version was also runnable on a single Nvidia Xavier 

module. It achieved a performance of 6 FPS at a power consumption of 47 W. The Bottleneck, in this 

case, is the GPU, which is not capable of handling the high amount of DNNs. After offloading the 

computation of the object and gesture detection to the second Xavier module, the performance was 

increased to 16 FPS in all detection simultaneously with a power consumption of 55 W. This relates 

Figure 8: Structure of the offloaded task for 
object/gesture recognition using OmpSs@Cluster 
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in an efficiency of 0.29 FPS/W, which is higher than the goal of 0.2 FPS/W. If you compare the 

efficiency of the first prototype with the efficiency on the embedded prototype, the energy 

efficiency is increased by a factor of 12. This is possible by combining specialized hardware with the 

help of an adequate middleware.  

 

Figure 9: FPS, Watt and FPS per Watt comparison between all performed optimization steps. Marked in blue the first, in 
orange the second and in green the embedded prototype. Red is the goal of 10 FPS by 50 Watt. 

3.5 Development of additional Features 

In order to increase user-friendliness, additional functions are being developed. These include hand 

gesture recognition to control the mirror, Kalman filter and Hungarian algorithm for tracking 

detections, user behaviour prediction and recommendation. Therefore, a dataset of 32 hand 

gestures and a dataset of user interaction of the mirror is created. 
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3.5.1 Implementation of Tracking using Kalman Filters and Hungarian Algorithm 

A very important feature is tracking the recognized faces, objects, and gestures. This allows many 

simplifications and increases usability. In the beginning, all decisions were based on findings only, 

but now the tracked detections are used to make decisions. Kalman Filters are used to predict the 

next value for each detection. In our 

case, the input of these filters is the 

bounding boxes of each detection in 

each frame. With the Hungarian 

algorithm, the current detection and 

the predictions are cost-efficiently 

associated. After a small number of 

frames, an ID can be assigned for each 

detection. Thereby the current 

detection is related to the previous 

detections. Predictions of the Kalman 

filter are also done and assumed to be 

valid even if no detection is visible for a 

short time. All different tracked 

detections are associated, and the 

users can be tracked, even if they turn their face away, for example. The detection of persons is the 

key point for the whole mirror. For this approach, a Kalman filter is needed for each detection and 

cannot be shared. Many calculations can be done in parallel and are done so with the help of OmpSs 

parallel for pragma.  

3.5.2 Dataset of Hand Gestures for easy control 

For an easy to use control of the smart mirror, hand gestures are used. No freely available data 

record has existed for this scope, so a custom data set had to be created. In order to train a DNN to 

recognize the desired gestures, a huge dataset is needed. The result consists of 32 hand gestures of 

13 persons (examples for gestures are shown in Figure 12). We distinguish between left and right 

hands and rotations are considered (e.g. thumbs 

up or down).  This results in an amount of four 

hundred thousand images. Three persons are 

used for a test dataset, and nine people are in 

the training dataset. Further extensions are 

planned, and further special cases will be 

covered.  Custom YOLO networks are trained 

with this dataset with the darknet framework. 

Some image augmentations are automatically 

done by this framework (e.g. colour shifts, 

scaling). The best results are achieved with 

yolov4-tiny with three YOLO layers. This runs on 

a NVidia Xavier with 30 FPS on the GPU by a 

utilization of 60%. The training reached a mean 

average precision of 92% by an intersection over 

the union threshold of 0.5. This is an 

Figure 10: Workflow of Kalman filter and Hugarian algorithm for 
detection tracking 

Figure 11: Gestures are used to control the main menu. This 
example shows all outputs of the DNNs. Gesture with the 

center of the gestures in red 
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extraordinary result considering the size and texture of hand gestures. Due to data privacy reasons, 

the dataset cannot be made publicly available. A publication of the trained network is planned after 

further revision. For this purpose, further neural networks will be trained and compared. Due to the 

current world situation and difficulties in data acquisition, this was not possible within the scope of 

LEGaTO. 

 

Figure 12: Example for the hand gestures in the dataset 

3.5.3 Behaviour Prediction of the User Interaction 

For a really intelligent mirror, a form of behaviour prediction is mandatory. Therefore, a large 

amount of usage data is needed. In order to gather this data, all messages broadcasted by the 

modules within the mirror are parsed and the status of the mirror is stored within a database. This 

database is continuously enlarged while running the smart mirror. Figure 13 shows the pipeline of 

this. Due to the current situation only, a small dataset could be gathered so far and interaction with 

multiple persons is also hardly represented. The first prototype is permanently exhibited on the 

corridor of our work rooms and trained test persons stand in front of it at regular intervals. This 

Figure 13: Pipeline for status recording. These data entries consitst of the status of the whole mirror and all information 
of the installed modules (e.g. weather forecast, mensa offering, visible objects). 
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shows to be a good source of individual data sets. Sadly, public events, like fairs, were already virtual 

as we gathered data and due to distancing rules, data of presentations of the mirror are lacking. This 

must be considered in the following examinations and it explains why so far only the first 

examinations have taken place. The gathered dataset can be visualized with the graph in Figure 14. 

It shows the transition probabilities of all test users between the possible actions. The current status 

of the mirror offers a total of 33 different actions. The actions can be grouped into 4 different types. 

Campus, entertainment, and utilities are different categories of according applications (e.g. 

weather of utilities or cafeteria offering for campus). The category camera consists of all possible 

actions with regards to the camera of the mirror (e.g. show different detections or style transfer). 

The start point of all interaction with the mirror is the login state in the middle and all interactions 

stop with the logout of the user. Based on these data, different models were examined. The input 

for all subsequent models is the last 32 data entries of the database. Figure 15 shows the simple 

Markov chain representation of this graph. This is already a very good model to describe the 

problem of behaviour prediction for our case. Other investigated techniques of machine learning 

are: Adaptive Boosting classifier (ADB), Most Frequent Used (MFU), k-nearest neighbours (kNN), 

Figure 14: Visualisation of the gathered dataset. All points represent an action to open or modify the according modul. 
All actions can be grouped into 4 types. Campus, entertainment and utilities group the according modules and camera 

for the smart mirror 
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Long Short-Term Memory (LSTM), Markov chain (MC), Decision Tree classifier (DT), Gated 

Recurrent Units (GRU), Bayesian networks (BN), Bernoulli naive Bayes (BNB), Support Vector 

Machine Classifier (SVC), Feed Forward Neural Network (FF-NN) and Random Forest Classifier 

(RFC). The database is split into a training and a test part and all models are trained with the same 

partitions for a fair comparison. Interesting for behaviour prediction is not only the next interaction 

but the next k predictions (Top-k). This means, that in case of k=3 not only the next interaction is 

predicted, but the next three possible interactions. These can then be suggested to the user. Figure 

16shows the precision for the different trained models. Because the data set is still quite small, these 

results are only conditionally meaningful and must be validated with more data. All except ADB and 

MFU and SVC have a similar good performance. Most promising seems to be a Bayesian networks 

with the highest score starting from k=2. In general, the performance of the prediction at top k=3 

can be classified as 70%, which is a good result compared to literature values (from the area of 

Figure 15:Markov chain representation of the user interaction of the smart mirror 

Figure 16: Results for the precision for the different trained models over different Top-k values 
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smartphones). Unfortunately, these cannot be compared directly with the values achieved here 

because the initial situation and implementation are too different. For a first recommendation 

system, the previously mentioned networks already show a sufficiently high accuracy as long as it is 

not necessary to differentiate for all users. If a user stands in front of the mirror doing nothing for a 

long time and the prediction shows a certain accuracy, a proposal can be made. Here the behaviour 

of other users can also support. A further step can be to detect anomalies if the behaviour of one 

user is in total contrast to the user's normal behaviour. 
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4 Smart City 

In many urban areas, air quality and associated impacts on public health are matters of growing 

concern. The emission and dispersion of critical pollutants (PMx, NO2 and ground-level O3) correlate 

with cancer, asthma, cardiorespiratory problems, brain development in children and reduction of 

life expectancy in general [6]. As a consequence, air quality monitoring networks and modelling 

forecasting systems are critical to increase awareness and, ultimately, to assist decision-makers on 

the adoption of measures to protect public health. 

 

Figure 17: Used Tools in the smart city use case of the LEGaTO stack 

The Smart City use case is composed of four different components that, individually, meet a specific 

project objective and, in combination, allows the development of an operational air quality 

modelling system at street-level resolution based on CFD. Figure 18 shows the key components of 

the air quality modelling system. Most of the individual components have already been developed 

within other research projects. In this operational workflow, different inputs are required by the CFD 

model to simulate urban-scale winds: 

• Meteo data: CFD models require initial boundary conditions to confine the physical 

problem into a finite computational domain (e.g., a city mesh). These boundary conditions 

set the inputs of our CFD simulation, defining how the fluid, or wind in our case, enters 

(inlet) or leaves (outlet) the domain. In other words, boundary conditions connect the 

region of interest (our urban area) with its surroundings. 

• Sensor assimilation: In order to model and forecast urban-scale pollutant dispersion, it is 

not only necessary to dispose of high-resolution near-surface wind fields, but also to 

characterize the sources of pollutants at street-level (mainly derived from vehicle 

combustion) through sensors or emission inventories 
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• CFD-based wind and pollutant dispersal modelling: Within the Smart City use case, the 

CFD-based simulator is the main core of the whole application. To this end, an urban-scale 

wind forecasting system was developed, based on coupling the meso-scale WRF model (a 

numerical weather prediction system) [7], with BSC’s Alya modelling system [8], a CFD-

based simulator. In order to simulate the air flow through the urban-scale morphologies 

(buildings), the CFD model solves the incompressible Navier-Stokes equations on a 

computational mesh that represents the city geometry. However, due to its physical 

complexity, the use of CFD techniques requires massive computing resources. 

• Data gathering and streaming: After the simulation, data is collected directly from the 

CFD model and the environmental network. Pollutant data is post-processed and published 

using an Open Data format in a BSC repository. The post-processing may require large 

amount of memory resources to be interpolated and stored in databases depending upon 

the mesh size and refinement. Finally, the data provided might be used by visualization and 

analysis tools for their study. 

 

Figure 18: Conceptual sketch of the urban-scale air quality forecast system 

On top of this model, the most critical components have been chosen to take advantage of the 

LEGaTO platform. Actually, within this workflow, the Alya CFD-based simulator is the main 

compute-intensive component and the one that takes longer to run, and therefore some of its 

kernels are the main target to be ported to the LEGaTO stack. The source code can be found under 

https://github.com/legato-project/FinalSoftwareStack 

This use case aims at demonstrating that monitoring of urban air quality through CFD simulations 

is feasible for short term forecasts (also known as nowcasting) in an operational workflow built on 

top the LEGaTO stack. 
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4.1 Metrics & Optimization Goals 

Due to the operational context of the Smart City use case, the air quality model must be constantly 

executed every update period with new input data from pollution sensors and the meteorological 

agency. The update period can be so small, between 30 minutes and 1 hour, that it can be critical for 

running the whole simulation. In this scenario, the LEGaTO stack is pivotal, both in terms of 

leveraging the processing capabilities to shorten simulation times and improving the energy-

efficiency of a highly-demanding urban-scale air quality modelling system. In order to evaluate the 

LEGaTO implementation, two main metrics must be gathered: 

• Use case performance: elapsed time per CFD simulation (metric 1). 

• Energy-efficiency: Joules per CFD simulation and FLOPs/watt (metric 2). 

 

Using the previous two metrics, the following LEGaTO optimization goals will be evaluated for this 

use case: 

• Allow complex urban area simulations (metric 1): leverage total execution time objective 

(10x faster). 

• Increase update frequencies in the operational context (metric 2): one order of magnitude 

in energy-efficient objective (10x energy savings). 

• Improve FPGA designer productivity: ease the porting of compute-intensive kernels to 

FPGAs devices using OmpSs model. 

• Increase the MTBF factor: support fault tolerance by means of agnostic FPGA task 

checkpointing, allowing task replication and reduction of failures during simulations (5x 

increase). 

4.2 Baseline Benchmark 

Once that the functionality of the LEGaTO version is checked, a baseline test case must be used to 

benchmark the Smart City use case. This test set will be used to evaluate the optimization goals of 

the LEGaTO implementation with respect to the original code using the agreed metrics. The test 

set was run on MareNostrum IV supercomputer, and the most important metrics were obtained as 

a reference for the baseline. These metrics will be used in future analysis to evaluate the 

improvement of the LEGaTO implementation. 

The baseline evaluation is performed using a pure-MPI Alya CFD version running the Smart City 

application. Then, we will evaluate the application by applying the LEGaTO optimizations 

mentioned above. These will include OmpSs taskification to express efficient parallel execution of 

the application, using single or mixed-precision floating point with minimal loss of quality, and 

vectorization for efficient execution on accelerators. 

The test set used for the baseline comparison is composed of two tests, a minimal mesh and a full-

size mesh: 

• Test 1: proof of concept mesh with a single square building block of 22 meters height and 

150 meters long on each side (see Figure 19). The whole urban-area mesh is composed of 
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almost 1 million tetrahedral elements, with a higher element refinement on the boundary 

layers of the building and on its leeward wall (downwind side of the building). 

• Test 2: full-sized mesh of Barcelona city geometry of 500 meters high (see Figure 20). The 

whole urban-area mesh is composed of 80 million tetrahedral elements, each element with 

a minimum resolution (length of the element faces) of 15 meters at surface level (streets 

and building walls). 

 

 

Figure 20: Mesh with a full-sized urban mesh from Barcelona city 

As initial condition for the simulations, a west-component (180 degrees) logarithmic wind field 

profile (10 m/s−1 on the top boundary) is used. 

Each MareNostrum IV node in our testbed platform is composed of 2 sockets with Intel Xeon 8160 

processors with 24 cores each. They run at a frequency of 2.1 GHz and have 96 GB of main memory. 

One single node was used for test 1 (48 MPI tasks) and 10 nodes were used for test 2 (480 MPI tasks). 

Using this configuration, the Alya’s CFD model was run in a pure-MPI parallel way over 100 time-

steps for both tests. Different metrics were taken from the job execution for future comparisons 

with the FPGA versions. 

On the other hand, we also run some initial tests on the AXIOM board platform. This is an ARM64 

bit architecture with a Xilinx FPGA accelerator [9]. However, given the memory constraints on this 

platform, only the ARM64 processor was feasible to be used with the single building block test (test 

1). The results obtained on both platforms for metrics 1 and 2 were: 

Baseline metrics 
Explicit 

momentum 
SpMV Whole simulation 

Elapsed time 12.63 s 2.08 s 28.75 s 

Figure 19: Mesh with a single building block 
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Energy consumption - - 
9741 Joules 

(2.7 Wh → ~0.3 Wh in the FPGA) 

Performance per 

Watt 
- - 

273 MFLOPs/Watt 

92.5 GFLOPs (per node) 

Table 2: Metrics for test 1 on MN4 using 48 MPI tasks 

Baseline metrics 
Explicit 

momentum 
SpMV Whole simulation 

Elapsed time - - 29800 s 

Energy consumption - - 
195190 Joules 

(54.2Wh) 

Performance per 

Watt 
- - 

12.96 MFLOPs/Watt 

84.92 MFLOPs (per node) 

Table 3: Metrics for test 1 on AXIOM board using 4 OpenMP threads 

Base line metrics 
Explicit 

momentum 
SpMV Whole simulation 

Elapsed time 654.9 s 268.7 s 1505.45 s 

Energy consumption - - 
4733167 Joules 

(1.3 KWh → ~0.1 KWh in the FPGA) 

Performance per 

Watt 
- - 

175 MFLOPs/Watt 

55.2 GFLOPs (per node) 

Table 4: Metrics for test 2 on MN4 using 480 MPI tasks 

4.3 Development Status & Optimization Path 

Within the Smart City use case, the CFD-based simulator is the main core of the whole application. 

To this end, an urban-scale wind forecasting system was developed, based on coupling the meso-

scale WRF model with BSC’s Alya modelling system. On top of this model, the most compute-

intensive kernels are being ported to take advantage of the LEGaTO platform. Two main hotspots 

have been identified as targets: 

• Explicit momentum solver: long numerical code where the submatrix for each element in 

the mesh is computed and assembled in the global system. This is the main optimization 

target due to their computational cost (~60% of the global time). (kernel 1) 

• Sparse Matrix Vector operation (SpMV): Sparse L2 BLAS operation used in both explicit 

momentum (just once per time-step) and implicit pressure solver (iteratively until 
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convergence criteria is reached). Due to its relative computational cost (~10-15% of the 

execution time) this operation has been also considered to be ported. (kernel 2) 

The porting of those two kernels to the LEGaTO stack requires at least two operations: the full 

rewrite of the Fortran90 kernel codes to C language, and the kernel taskification with OmpSs 

programming model. Note that both algorithms are dominated by the indirect memory accesses 

due to the unstructured mesh connectivity.  

The first step consisted in developing a fully ported of both kernels to C and has been taskified with 

OmpSs. The kernel has successfully been compiled and run on Intel and ARM64 platforms (Intel 

Xeon Platinum 8160, Cavium ThunderX2 64-bit ARMv8 [10] and AXIOM board [9]), where the 

baseline test-case for the Smart City use case was executed to validate the correctness.  These 

kernels were also annotated with OmpSs@FPGA directives in order to run on the Xilinx Zynq 

Ultrascale+ FPGA on the AXIOM board. However, the existing memory on that device was not 

sufficient to execute the test-case. Its 4GB of memory were not enough to load the mesh, allocate 

Alya physical variables, use the OmpSs backend (libnanos), and allocate the required buffers to 

transfer data back and forth to the FPGA processor. As a workaround and for future testing, the 

development has been moved to a PCIe Alphadata FPGA board [11] which incorporates more 

memory. 

The second step consisted in developing an optimal implementation of the SpMV on the FPGA 

board.  The main reason to start with kernel 2 is that improvements developed on this kernel would 

easily be applied on kernel 1, which is more complex to develop.  On the SpMV, the main 

performance issue to consider is the storage format of the sparse matrix. The sparsity pattern of the 

matrices arisen from Alya is highly irregular since it represents the connections from the cells of an 

unstructured mesh. The number of non-zero elements per row depends on the geometrical shape 

of the cells, and for tetrahedral meshes is 5 for almost all the cells. The rows that represent the 

connections with boundary conditions have less non-zero elements, zero padding is applied on 

those rows to introduce regularity. CSR is the most common storage format used on sparse 

matrices, however in the Smart City use case the optimal storage format is the sliced ELLPACK [12].  

Three different implementations using FPGA were compared with the CPU version on the PCIe 

Alphadata FPGA board: i) the naïve implementation using the same ELLPACK format than the CPU 

ii) an optimized CSR found in the literature [13], and finally, iii) a tuned ELLPACK format that aims 

at reusing the data by implementing a cache like structure that optimizes the reading of multiplying 

vector. 

For testing the implementations, a set of matrices arisen from Alya with sizes ranging from 50,000 

rows up to 800,000 rows was utilized. The optimized CSR has the limitation that the resulting vector 

needs to be fully loaded into local memory, and therefore, the matrix size is limited by the 

architecture specifications. The execution times are shown in Table 5. 

 50,000 100,000 200,000 400,00 800,000 

NAÏVE 0.138 0.277 0.545 1.183 2.335 

CSR OPTIMIZED 0.112 0.221 0.425 0.903 1.758 

ELLPACK 

CACHED 

0.017 0.025 0.036 0.075 0.142 

CPU 0.001 0.003 0.005 0.012 0.023 

Table 5: Execution time in seconds for the SpMV using different implementations on the FPGA 
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The results show that the optimized FPGA outperforms in up 16 and 12 times the naïve 

implementation and the optimized CSR, respectively. However, in its best case runs 6 times slower 

than the CPU version. The unstructured memory accesses are difficult to map on the FPGA, needing 

of extra logic on the die that reduces the possibility of exploiting the parallelism. These results lead 

to the decision of changing the LEGaTO component to the NVIDIA Xavier boards as explained in the 

next section.  

4.4 Final numerical results 

The LEGaTO component utilized for the numerical results consisted in two NVIDIA Xavier boards 

connected through a PCIe link developed at Bielefeld. One of the characteristics of the Xavier boards 

is that the maximum energy consumption can be altered by changing the frequency, power budget 

or the number of cores available. Each board has up to six different setups, so called energy modes. 

In our case, the most representative modes are: 

• Mode 0: Full computing capability, at 2265 MHz frequency, and no power budget (8 cores 

and GPU available) 

• Mode 3: Full computing capability, at 1200 MHz frequency, and a power budget of 30W (8 

cores and GPU available) 

As a baseline we have considered the execution using one MareNostrum4 node. The node is 

composed of two Intel Xeon Platinum 8160 summing up 48 CPU cores.  

Alya parallelization strategy is based on a geometrical domain decomposition. A partition of N 

subdomains requires of launching N+1 MPI processes.  The process with rank 0 coordinates the 

work, while for each of the remaining N processes (workers) a unique subdomain is assigned. Point-

to-point MPI communications transfer the data between adjacent subdomains, while collective 

communications involve all the processes. CUDA is used to engage the Xavier board GPU. An 

overlapping strategy is utilized to hide part of the overhead of performing MPI+CUDA 

communications. Moreover, all the MPI processes (workers) launch CUDA kernels to the same GPU. 

The execution time of the time integration of 1000 steps has been considered. Note that the pre-

processing stages are not measure here since in a real simulation its costs become negligible 

compared with the millions of time integration steps needed. The results are show on Figure 21. 

 

Figure 21: Total execution time of Alya test case for different configurations 

The results show that the faster execution utilizing a single Xavier Board is obtained when the 

energy mode with maximum consumption is activated (mode 0). This is also true when engaging 
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both boards of the prototype, however the performance doesn’t scale linearly. Only a 50% of 

acceleration is attained by adding an extra Xavier board in the calculation. The performance 

degradation can be explained by the overhead introduced by the PCIe interconnection between the 

cards when point-to-point or collective communications are needed.  

In addition, a MareNostrum4 node (48 cores) runs 6.3 times faster than a single Xavier board (8 

cores+GPU) at its maximum energy mode.  

Despite the slower results of the prototypes, a more interesting perspective can be obtained by 

analysing the power consumption on each platform. In MareNostrum4, jobs are launched using the 

Slurm Workload Manager [14]. While running, Slurm collects performance and power consumption 

information that we gather and analyse. For the Xavier prototypes, the tegrastats tool [15] provided 

by NVIDIA reported such information. In both cases, the full power consumption of the node was 

considered. The results presented in FLOP per watt are depicted in Figure 22.  

 

Figure 22: Energy efficiency in GFLOP/W for different setups 

The energy measurements show that one Xavier board in mode 0 is 35 times more energy efficient 

than the Marenostrum4 node. Moreover, if the Xavier mode is utilized in mode 3, the energy 

efficiency achieved is 95 times at the cost of 11x slowdown. When using 2 Xavier boards, the 

speedup obtained is only 1.7x (due to the overhead of communications), and as a result, the 

performance and energy - efficiency do not get benefits. One may consider to use the 2 Xavier 

boards in mode 0, to get better performance at the expense of being less energy efficient 

The current configuration of the Bielefeld Xavier prototype allows engaging only up to two Xavier 

nodes. A rough estimation of the performance using more nodes is possible by measuring solver 

calculations and communications times separately for different workloads.  

The time of calculations are measured locally using one Xavier node for matrices ranging from 

50,000 to 1,600,000 rows.  Note that by doing this we are assuming an optimal distribution of 

workload among the nodes. The next step consists in estimating the communication costs only 

using 2 nodes. For this task, we have measured the communication between two nodes using 

different message sizes. The main assumption is that the slowdown in performance when passing 

from 1 to 2 nodes is going to be just scaled by the message size when passing from 2 to 4 nodes.  

The calculation and communications times are shown in Table 6.  
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Nodes 1 2 4 8 16 32 

Local workload 1,600,000 800,000 400,000 200,000 100,000 50,000 

Calculations 5.64 2.18 1.07 0.42 0.29 0.16 

Communications 0.03 0.18 0.78 1.03 4.03 12.66 

Total Time 5.67 2.35 1.85 1.45 4.32 12.83 
Table 6: Execution time in seconds of the calculations and communications of Alya's solver for different workloads 

 The final scalability is obtained by adding the calculation and communications costs. The 

estimation of the scalability of the solver using up to 32 nodes is depicted in blue on Figure 23. It is 

clear that the communication cost becomes a bottleneck when the workload per node decreases.  

A more optimistic approximation can be done by assuming that the network would behave as in 

Marenostrum4.  For that matter, the communication using two nodes was measured, and then, 

scaled according to numerical results obtained on Marenostrum4. The dotted on the figure 

represents the MareNostrum4-based estimation. Note that a better network would improve the 

performance on the prototypes, and therefore, it would increase the gap in terms of energy 

efficiency between both configurations. 

 

Figure 23: Estimation of the scalability of Alya 

4.5 A low energy-consumption Alya-oriented cluster 

Alya is one of the twelve simulation codes of the Unified European Applications Benchmark Suite 

(UEABS), and therefore takes part in many scientific projects that result in using a large part of the 

PRACE infrastructure. On Marenostrum4, Alya-based simulations are one of the main applications 

that exploit the supercomputer.  Over the last year, the majority (~60%) of Alya-based simulations 

engaged an average of 50 computing nodes (2,400 CPU-cores) on MareNostrum4. Consequently, it 

would make sense to create an infrastructure oriented to solve simulations on that size range, since 

it would have the largest impact on Marenostrum4 power consumption. 

An estimation of the size of the new infrastructure can be obtained considering the optimistic 

scalability estimations. For this purpose, three assumptions are needed:  

1. the simulation results on the new infrastructure should be attained on a similar time frame 

2. a node of Marenostrum4 is 6.3 times faster than a Nvidia Xavier node (see Figure 20) 

3. up to 9.3 times of acceleration would be obtained by using 8 Xavier nodes (see Figure 22) 
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The conclusion is that the new low-energy consumption cluster should be composed of 400 Nvidia 

Xavier nodes that would deliver the same execution time on the average usage of Alya, than the 

usual 50 Marenostrum4 nodes. 

The ratio of power consumption between a node of Marenostrum4 and a Xavier node is 

approximately 35 times when running an Alya use case. Then, the new cluster that would need 8 

times more nodes would consume approximately 4.4 times less energy than Marenostrum4. Since 

the new cluster would be used on 60% of Alya executions, the other 40% would still consume the 

same. Therefore, the overall power consumption of Alya would be reduced by 47%. 

4.6 Increase robustness for Alya at large scale 

The smart city use case sometimes requires runs with very high resolution and long timelines. It is 

not surprising for some of those runs to take hundreds of hours of execution, spanning over several 

weeks in multiple runs of 24 to 48 hours. In addition, these simulations usually run on thousands of 

processes, consuming hundreds of thousands of CPU hours.  

Supercomputers at the petaflop scale with thousands of computing nodes, such as the 

Marenostrum4 supercomputer at the BSC, usually observe around three node failures per day, 

translating into a mean time between failures (MTBF) of about 6 to 8 hours. At this scale, any failure 

immediately translates into huge energy waste. Therefore, we apply checkpoint/restart (see 

chapters 5.1 and 5.2 of Deliverable 3.3 [16]), to substantially decrease the amount of re-computation 

required upon a failure. However, checkpointing had not been applied to the GPU version of Alya 

previously. It is not easy to checkpointing heterogeneous applications as one must work with 

multiple memory devices, the host and the device memory.  

In LEGaTO, we have created a tool capable of checkpointing heterogeneous applications running 

on GPU clusters, such as Alya. Moreover, our tool leverages multiple storage systems implementing 

multilevel checkpointing, and we parallelize device-to-host data streams, with writing into reliable 

storage (i.e., SSDs, PFS). In this way, we have not only enabled fault tolerance for heterogeneous 

applications but also decrease the checkpoint and recovery time by up to 15.23X and 5.21X, 

respectively. Furthermore, for the same amount of waste, i.e., 15%, our checkpointing technique 

can sustain execution in systems with 6.3 times smaller MTBF [17]. 
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5 Infection Research 

Recently, biomarkers are used widely in medical research to detect a disease early, for diagnosis, in 

making prognostic or risk assessments, which nowadays plays an important role in modern clinical 

and preventive medicine. By modern technologies like microarrays, next generation sequencing, 

and mass spectrometry, researchers can measure many biomarkers that may exceed ten thousands 

[18] [19] [20]. With this development comes the challenge to find biomarkers to detect the risk to 

have a disease or diagnose it with high confidence. 

To avoid wasting time and money, researchers do pilot studies with a small number of observations 

as necessary first step for biomarker discovery. Because of the small number of cases and the large 

number of biomarker candidates, any result might be caused by random effects and statistical 

significance cannot be proven. For that, researchers try to reduce the number of biomarkers and 

extract the most informative ones from these pilot studies to then increase the sample size and 

achieve an adequate statistical power. 

5.1 Description of the accelerated biomarker discovery workflow  

Check the data from a pilot 
study for the presence of 

biomarkers exceeding random 
effects

Reduce the number of 
biomarker candidates 

using ensemble 
techniques

Evaluate 
the best 

combination 
as 

classifier

If biomarker 

candidates  

are found 

The study can be extended 

to collect more data  

Estimate the 

sample size 

 

MAXELER DFE 

LEGaTO testbed 

XiTAO 

OmpSs@FPGA 

SCONE 

Figure 24: Accelerated biomarker discovery workflow 
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Figure 25: Healthcare Toolchain 

The discovery of biomarkers, from the pilot study to the biomarker that can be used in practice, 

involves several different steps of data analysis, as shown in Figure 24. In order to accelerate the 

workflow described in detail below, we have used several components of the LEGaTO toolchain, see 

Figure 25.  

In a first step, we check the data for the presence of biomarkers that have an association with an 

outcome exceeding the pure random effect. Our new HiPerMab curve method (to be published 

soon) shows how many biomarker candidates in the real data set exceed a specific value of entropy 

(a performance measurement) compared to a random data set and a confidence interval, see Figure 

26. To measure the probability of how many biomarkers exceed a specific value of entropy, 

simulations have to be done. 

Figure 26: The number of biomarkers with a performance value that does not superpass a 
specific value of entropy 
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In cooperation with Maxeler and their MaxCompiler, the computing time for the simulations has 

been reduced dramatically by accelerating key parts of the computation with Maxeler DFEs. As a 

first step, the application was profiled for its most computationally intensive components. These 

ones naturally represent the best opportunity for application speed-up. Due to the close link 

between efficient processing in terms of speed and energy on DFEs, successful application speed-

up by offloading computation-intensive parts to DFEs also typically leads to significant energy 

reductions. In this case, the cut index function which is part of the R package "discretization" was 

chosen for DFE offloading and acceleration. This process meant the cut index functionality was re-

implemented in Maxeler’s MaxJ language and compiled to a state-of-the-art MAX5 DFE card with 

MaxCompiler. In order to facilitate the integration of the DFE accelerator functionality into the 

original R application, a C++ interface layer was created in order to call the Maxeler SliC API [21]. 

To reduce the number of biomarkers (also called features), we extract the most informative ones 

simply by ranking them according to AUC, entropy, sensitivity, specificity or other metrics. This 

approach of feature selection by filtering is relatively fast but does not take relationships between 

biomarkers and biomarker combinations into account.  

Along with the advancement of high-throughput technologies that allow measuring the whole or 

large parts of the genome, transcriptome, proteome or metabolome, came a strong hope to find a 

single biomarker for each disease or state of a disease to be diagnosed with very high certainty. 

However, this dream did not come true, and it seems to be unrealistic from today’s point of view. 

Biological systems are probably too complex for simple single-cause single-effect associations. 

Nevertheless, there are biomarker candidates that show a high correlation with specific diseases 

but are not reliable enough to function as predictors for the presence of a specific disease alone. 

Instead of relying on a single biomarker, the idea is to combine biomarkers that are not good enough 

for the diagnosis of a specific alone but can jointly provide a diagnosis with high certainty. Therefore, 

we additionally apply embedded feature selection with tree-based methods (random forests and 

gradient boosted decision trees), including the calculation of the robustness of the feature selection. 

Building thousands of models and finding the best set of hyperparameters is computationally 

expensive. This step of the workflow is accelerated based on the results of the accelerated HiPerMab 

curve method from the first step. In addition, we use a fast C++ implementation with Python 

bindings (lightGBM [22]) and a hyperparameter optimization software (optuna [23]), which 

generally speeds up the selection of hyperparameters. This optimization was developed on the 

LEGaTO testbed in Bielefeld and was made possible by the technical support provided there.  

To verify results that are not very robust, we want to use ensemble techniques. That is why we have 

added another new approach to the workflow. In this further algorithm, we do not predict the class 

directly from the training data. Instead, we predict every biomarker candidate by LASSO regression 

[24]. From the importance of the included class label for the prediction and the regression error, we 

calculate a weight for this specific biomarker candidate. We assume that the higher the weight, the 

more relevant the biomarker candidate is. Due to timing reasons explained in the deliverable 5.2 

and to use more diverse algorithms we switched the regression method from lightGBM ([15] a tree-

based method) to LASSO regression [17]. The LASSO regression has only a single hyperparameter 

that can be determined quickly. In addition, the LASSO algorithm is less complex and faster. As a 

pre-processing step for the LASSO regression, the skewed biological data must be scaled and 

transformed into a distribution close to a normal distribution. An example with randomly generated 

artificial data is shown in Figure 27. For this necessary transformation, we use the Yeo Johnson 

Transformation [25]. 
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Artificial random data Yeo Johnson transformed data 
 

Figure 27: Skewed random data versus the transformed data 

To accelerate this time-consuming transformation for large data sets we use OmpSs@FPGA. The 

implementation of the transformation was done in C and subsequently modified with 

corresponding OmpSs@FPGA and HLS instructions so that the time-consuming part of the 

program could be processed in the Programmable Logic of Zynq-7020 ARM/FPGA SoC 

Development Board. The transformation of an input vector was processed in a hardware pipeline so 

that the next iteration starts before the previous iteration is finished. 

At no point the use of a hardware description language (HDL) or knowledge about it was necessary, 

so OmpSs@FPGA fulfils the approach of a high-level synthesis very well and is a proof for increased 

designed productivity compared to HDL languages. Another advantage is the common address 

space of the Programmable Logic (PL) and the Processing System (PS). This allows a realization of 

the task like on a normal PC. 

The BSC provides a boot medium for the supported systems, on which operating system, runtime 

environment and libraries are installed. The BSC relies on the Docker technology for the distribution 

of the software for the OmpSs@FPGA project. By providing the appropriate image, the developer 

can download the desired OmpSs version for the target system as an image and start it in a 

container. In this container, an operating system with the necessary toolchain is available and can 

be used immediately. Only the "FPGA specific vendor tools" have to be inserted into the path of the 

started container. In the case of the Zedboard, which has a Z-7020 from Xilinx as FPGA, it was the 

Vivado Design Suite from Xilinx. 

This type of acceleration could also be applied in other similar applications that transform data for 

biomarker discovery and be added to the biomarker discovery workflow. 

Furthermore, we integrated the part using the LASSO regression with SCONE to test and show the 

possibility of secure data processing even in the cloud. Sensitive medical data can be handled 

according to data security aspects. 

Combining the information of the different approaches explained above, we select a subset of 

biomarker candidates. We then estimate the sample size for extended studies in order to achieve 

adequate statistical power. After collecting enough data, we repeat the biomarker selection process 

and evaluate the best combination of biomarkers using Random Forests.  

In our previous version of this algorithm, we selected the 18 most promising biomarker candidates 

from a data set with 66 samples and calculated every possible combination within this selection. 

From a statistical point of view, however, the number of biomarkers in the classifier should not 

exceed 10% of the sample size, and from a medical point of view, researchers prefer to have as few 

biomarkers in the model as possible. For this purpose, we optimized the code in a first step by 
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reducing the number of biomarker candidates contained in the classifier to a maximum of 6. We 

have parallelized the adapted code for the new baseline measurements. In order to really achieve a 

significant acceleration, we have implemented the complete algorithm again in C++ and accelerated 

this implementation with XiTAO (c.f. section 8.1). We chose XiTAO because it is very simple to 

integrate into C++ code and the program can be run on any computer. Depending on the number of 

available cores, the acceleration can easily be adapted to the respective hardware environment. 

This part of the software can be reused without any special hardware requirements. 

The optimised software used in the Infection Research use case can be requested via Prof. Dr. Frank 

Klawonn <frank.klawonn@helmholtz-hzi.de>, who is leading this use case at the Helmholtz Centre 

for Infection Research. 

5.2 Metrics & Optimization Goals 

We could reach our main optimization goal to achieve a significant speedup in several parts of our 

biomarker discovery workflow. This enables us now to handle larger data sets (especially in terms 

of biomarker candidates). The number of biomarkers and the size of the data sets we are able to 

handle is crucial for our future projects. We are part of the project consortium i.Vacc (paving the way 

towards individualized vaccination) [26]. The project started in 2020 funded with one million Euro 

within the framework “Big data in the future life sciences” of the Lower Saxony Ministry for Science 

and Culture in Germany [27]. In contrast to our other projects where we usually handle data from 

one so-called omics fields (metabolomics, proteomics, transcriptomics, genomics), we will look 

jointly at different types of omics, increasing the number of biomarker candidates drastically. 

Analysing data from three or four different omics fields jointly does not mean that we have to apply 

our algorithms three or four times but the size of the biomarker candidate data set increases by 

factor of three or four. Our goal is therefore to work with data sets at least three times as large as 

the ones we could handle before. This means we want to extend the number of biomarker 

candidates to >50,000 and the sample size to >100. With the optimizations achieved in the LEGaTO 

project, these calculations are now possible. 

We analysed data with more than 50,000 biomarker candidates and estimated a probability of less 

than 1/50000, which means that we performed 5 million simulations (with a 95% probability that the 

(relative) error was less than +/- 20 %). Also, we can apply our feature selection methods to data sets 

with more than 50,000 biomarker candidates and achieve better results by being able to calculate 

more trials in less time saving a significant amount of energy. Furthermore, we are now able to find 

biomarker combinations from biomarker sets that are larger than 20. 

5.3 Benchmarks 

To evaluate our progress, we measured the runtime and the energy consumption of our algorithms. 

The data set used for our benchmarks belongs to a pilot study which used whole-genome microarray 

analysis to investigate the transcriptomes of periprosthetic hip tissues to identify genes that are 

differentially transcripted between chronic periprosthetic hip infection and aseptic hip prosthesis 

loosening. Differentiating between periprosthetic hip infection and aseptic hip prosthesis loosening 

can be challenging, especially in patients with chronic infections. 24 samples are represented in the 

rows. 12 cases with chronic periprosthetic hip infection, which is represented as infected and 12 

cases with aseptic hip prosthesis loosening, which is represented as uninfected. The data has 50416 
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genes (biomarker candidates) each one is represented in one column. We analysed this data set with 

more than 50,000 biomarker candidates and performed 5 million simulations. 

To check the data from this pilot study for the presence of biomarkers exceeding random effects 

with HiPerMab curves we accelerated the most time and therefore also energy-consuming part of 

the code. For the benchmark below, we considered the cut index function. 

As energy measurements in Jülich have not been possible because of a software bug, the energy 

measurements for the simulations have been carried out on the Bielefeld testbed using the internal 

power measurement possibilities of the RECS|Box system as described in D2.1 section 6.3. 

In LEGaTO there are two MAX5 testbeds:  

1. Jumax DFE system at the Juelich Supercomputing Centre and  

2. RECS|Box equipped with a MAX5 card located at Bielefeld.  

The calculations for the standard R version have been carried out on a Microserver with an Intel Xeon 

E3-1505M v6 CPU with 4 cores and 32 GB RAM.  

The energy consumption of the optimized version is 

shown in Figure 28. The blue part (PEG) shows the energy 

consumption of the MAX5 card, the violet part (Node) 

monitors the CPU and the green part shows the overall 

energy consumption of the complete node 4 of the 

testbed in Bielefeld (Total).  

In Table 7, the execution time and the energy 

consumption for 5 million simulations is listed for the 

execution of the standard R package parallelized and 

running with 7 threads and the optimized version using one 

MAX5 DFE card. MAX5 DFEs use a Xilinx Ultrascale+ VU9P 

and the detailed architecture of the card has been previously described in D2.1. 

The second acceleration is a software optimization based on the results of the HiPerMab curves and 

the best result of the ranked biomarker candidates. This optimization was developed on the 

LEGaTO testbed in Bielefeld and made possible by using the hardware provided there. 

For this benchmark we measured the duration and energy consumption in the testbed in Poznan 

using the node xeon-d-02, equipped with an Intel Xeon D-1577 CPU with 16 cores and 32 GB RAM. 

Table 8 below shows a comparison of the elapsed time and energy consumption of the first 97 trials 

of the hyperparameter optimization for the pilot study data set described above including 50416 

biomarker candidates. For one trial of the hyperparameter optimization for this specific data set up 

to 258 steps from 264 can be saved, which is an improvement of 97.7%. These savings are possible 

by incorporating the information obtained from the accelerated HiPerMap curves calculated in the 

5 million simulations Standard R Maxeler DFE  

Elapsed time (s) 13990.0  5.588 

Speed-up 1 (baseline) 2503.6 x 

Energy consumption (J) 906552.0 117.6 

Factor of saved energy 1 (baseline) 7708.8 x 

Table 7: Measurements for 5 million simulations 

Figure 28: Energy consumption of the 
Microserver and Maxeler MAX5 card 
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previous step. With the optimization 24975 steps of the nested leave one out cross validations for 

97 trials in this benchmark could be saved. And thus, the duration and energy consumption can be 

reduced. The improvements in duration and energy consumption are calculated based on the 

number of steps saved, and we assume that calculating fewer steps will require proportionally less 

energy and less time. Due to random parts of the algorithm, it is not possible to take exact 

measurements for a direct comparison. But the number of steps is a clear metric to compare both 

versions for this example. 

Embedded Biomarker subset 

selection 

Standard 

Version 

Optimized 

Version 

Saved 

Overall iteration steps of all 

97 trials 

25608 633 24975 iterations 

Duration 72 hours ~1 hour 48 

minutes 

~70 hours 12 minutes  

Speed-up 1 (baseline) 40x 97.53% of the time 

Energy consumption 2232 Wh 

= 8035200 J 

~55 Wh 

= 198000 J 

~2177 Wh 

= 7837200 J 

Table 8: Measurements for the first 97 trials of the hyperparameter optimization of the Embedded Biomarker subset 
selection 

The Yeo Johnson transformation is needed for the pre-processing of specific machine learning 

methods. For the biomarker discovery workflow, it is used as pre-processing step for the LASSO 

regression. The toolchain OmpSs@FPGA allows to implement the Yeo-Johnson transformation on 

a supported system on chip (the ZedBoard used for a proof of concept) and to accelerate it in the PL 

afterwards.  

By measuring the energy consumption of the Zynq-7020 ARM/FPGA SoC Development Board it 

should be checked if the increase in speed is not compensated by a correspondingly higher energy 

consumption. Therefore, the energy consumption during program execution was determined. 

Using a current probe (Tektronix TCP0030A), the current is measured at the positive pole of the 

power supply connected to the ZedBoard while the input voltage is kept constant at 12V DC. The 

current changes with the power consumption required during program execution. For Direct 

Current (DC) probes, the current is evaluated with a Hall sensor, the value of the Hall voltage is 

proportional to the required current. The used current probe can be connected directly to an 

oscilloscope. A Tektronix device (type MDO4054B-6) was used. 

The runtime in seconds is given as an average value rounded to milliseconds over all columns of the 

input file, at an FPGA clock frequency of 100 MHz. 

10.946 𝑠 

1.156 𝑠
∙

331 𝑚𝐴

375 𝑚𝐴
∙

12 𝑉

12 𝑉
=

10.946 𝑠

1.156 𝑠
∙

3.97 𝑊

4.50 𝑊
=

43.48 𝐽

5.20 𝐽
= 8.36 

Yeo Johnson Transformation ARM processor on  

the ZedBoard 

Z-7020 from Xilinx on  

the Zedboard 

Elapsed time (s) 10.946 1.156 

Speed-up 1 (baseline) ~10 x 

Energy consumption (J) 43.48 5.20 

Factor of saved energy 1 (baseline) 8.36 x 

Table 9: Measurements for the proof of concept of the Yeo Johnson Transformation 
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The data we use in the benchmarks below is linked to current biomarker research for bacterial 

meningitis. Bacterial meningitis is characterized by a high degree of neuronal damage and a high 

risk of long-term sequelae [28]. Therefore, one reason for molecular profiling of patient 

cerebrospinal fluid (CSF) samples is to improve the understanding of pathophysiological networks 

and mechanisms and to identify disease-specific pathways that could serve as targets for host-

directed treatments to reduce end-organ damage and, thus, improve clinical outcome. This data set 

for our benchmarks contains concentrations of 112 metabolites in cerebrospinal fluid samples from 

patients with bacterial meningitis (n=32), viral meningitis/encephalitis (n=34, due to herpes simplex 

viruses, varicella-zoster virus, and enteroviruses), and non-inflamed controls (n= 66).  

With this dataset, the benchmarks for the step of the workflow using the LASSO regression 

integrated with SCONE are executed. To protect patient data and analysis code (Python) we use of 

SCONE to encrypt data and code and run the computation inside Intel SGX enclaves. To measure 

the overhead of running our application with Intel SGX, we conduct experiments using a server with 

SGXv1 support running Ubuntu Linux with a 4.4.0 Linux kernel, equipped with an Intel Xeon E3-1280 

v6 CPU at 3.90GHz with 32 KB L1, 256 KB L2, and 8 MB L3 caches, and 64 GB main memory. We 

evaluate the performance of our application with three modes:  

1. native, without SCONE,  

2. SCONE hardware mode (HW) which runs with SCONE and activated TEE hardware and 

3. SCONE simulation mode (SIM) which runs a simulation without Intel SGX hardware 

activated.  

We report the average evaluation results of 10 runs in Table 10. Running the application with SCONE 

in HW mode is roughly 1.5x slower compared to the native version due to the fact that the analysis 

process requires memory-intensive computations and the Intel SGX enclave EPC size is limited to 

94 MB. However, running the application with SCONE in SIM mode has very comparative 

performance compared to the native version. This means with new hardware from Intel in the 

future, the performance of our application with the security guarantees, is expected to be similar to 

the native version. 

Measuring of code security is not a trivial task. Potential ways are to compare the size of the Trusted 

Computing Base (TCB), lines of code (LoC) or the binary size of applications; or we can count the 

known-vulnerabilities of the program. In the SCONE toolchain musl libc [29] is used which has ~60k 

LoC, however other frameworks use glibc which has ~460k LoC. For this, we are ~7.7x more secure 

than other frameworks. However, this provides just a very roughly estimation for security. 

In order to finally find a classifier that can be used in practice, the classifier performance of small 

combinations of biomarker candidates is calculated and compared. The following benchmarks were 

also performed on the meningitis-related data described above.  For this part of the workflow, the 

energy measurements were also carried out on the Bielefeld testbed using the internal power 

measurement possibilities of the RECS|Box system. In the following Table 11, the execution time 

and the energy consumption are listed for the calculation of all possible combinations with 5 

 Mean Standard Deviation 

Native 32.94 s 0.88 

SCONE (HW mode) 49.29 s 1.39 

SCONE (SIM mode) 31.44 s 0.94 

Table 10: Measurement of the overhead of running our application with SCONE 
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elements out of the 20 most promising biomarker candidates. All measurements were carried out 

on the same microserver with an Intel E-2176M CPU with 6 cores and 32 GB RAM. 

The Python and XiTAO versions both ran in parallel with 12 threads. Identical hyperparameters and 

the same algorithm were used in each case. The C++ version is the same code as the XiTAO version, 

but with XiTAO disabled. The C ++ version without XiTAO therefore runs serially. 15504 

combinations were calculated. 

Classifier evaluation (combinations) 

C(20,5), 66 samples 

Python C++ (serial) XiTAO 

Elapsed time (s) 104992 s  906 s 193 s 

Speed-up 1 (baseline) 215 x 544 x 

Energy consumption (J) 4727640 35334 11387 

Factor of saved energy 1 (baseline) 134 x 415 x 

Table 11: Measurements for 15504 Combinations 
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6 Machine Learning 

Although there are many success stories of deep learning (DL), which has spurred a wave of public 

and corporate interest in artificial intelligence (AI) and machine learning (ML), there are still many 

unsolved issues. One of these is how to make the DL models more efficient; both from an energy 

perspective as well as a cost perspective. This is especially true for embedded applications, e.g. 

autonomous driving, IoT and robotics. To solve this problem, we are developing a new kind of DL 

optimisation tool (EmbeDL) that will make DL models use significantly less energy and require less 

computations in order to be deployed to cheaper hardware. We will demonstrate the technology 

developed on vision applications relevant for autonomous driving: image classification, object 

detection and pixelwise semantic segmentation. The technology has been spun off into a startup 

called EmbeDL. For more information about the company visit https://embedl.ai . 

6.1 Metrics & Optimization Goals 

Multiple of the metrics in the LEGaTO Project are of interest for this use case. As mentioned, the 

energy consumption of today’s state-of-the-art perception systems are too high and need to be 

decreased. Thus, energy is the most important metric for the ML use case. The second most 

important metric is to make the models more computationally efficient. By doing so, the same 

original model can be deployed to cheaper hardware. Latency is also very important, since lower 

latency can be a critical metric in order to avoid accidents. Increased MTBF and code base security 

is of course also important for having operational and secure autonomous vehicles in the future. 

However, practically measuring MTBF and code base security in a meaningful way is challenging. 

We therefore chose not to focus on these goals, but rather focus on making the use case energy and 

cost-efficient. Thus, in order of importance, the metrics and goals are: 

• 10x energy efficiency (LEGaTO Objective #1) 

• 10x faster execution/latency (LEGaTO Objective #6) 

• Reduce Cost (LEGaTO Objective #5 & #7) 

• Increase designer productivity (LEGaTO Objective #4) 

6.2 Optimisation  

To reach the goal of accelerating deep learning inference in heterogeneous hardware, a Deep 

Learning Optimisation Engine, EmbeDL, was developed in LEGaTO.  

EmbeDL’s technology sits between a front-end interfacing with the major open source DL 

frameworks and a back end provided by the LEGaTO project as well as tools from various hardware 

vendors. The DL frameworks supported include all the popular frameworks such as TensorFlow [30], 

PyTorch [31] or Caffe [32] and open standards for interoperability such as ONNX [33]. The backend 

supports different hardware technologies including CPUs, GPUs, ASICs and FPGA (and in the future, 

new emerging chip technologies driven by AI applications). 

1. Easy-to-use Python API: EmbeDL has an easy-to-use API that makes it easy for data 

scientists to use  EmbeDL’s optimization engine. 

2. Graph Analysis: EmbeDL’s technology converts the model specification from any of the 

front-end specifications (TensorFlow, PyTorch, Caffe or ONNX) to EmbeDL’s proprietary 

https://embedl.ai/


 

  D5.3 Version 1.1 41 / 81  

computational graph-based intermediate representation. This is done so that (a) there is 

one common representation facing the front-end, (b) to allow the extensive surgery on the 

model performed by EmbeDL’s optimization engine and (c) to allow for a common interface 

towards hardware backends. 

3. Deep Learning optimization engine: This is the core of EmbeDL’s technology. EmbeDL 

uses many different state-of-the art model compression techniques to reduce the size (i.e., 

number of parameters) and computations (i.e., Floating Point Operations, FLOPS) of deep 

networks without sacrificing too much of accuracy (as required by the user).  

4. Hardware interface and compiler: EmbeDL is not trying to reinvent the wheel when it 

comes to hardware support, but rather complements the existing ecosystem. This is 

especially true when it comes to interfacing hardware, where we use the APIs and tools 

provided by the hardware vendors that are optimized for their proprietary hardware. 

However, most importantly, the hardware is abstracted away from the user, which clearly 

demonstrates the "write once run everywhere" programming promise of the LEGaTO 

project.  

 

Figure 29: EmbeDL toolchain and ecosystem 

6.3 Integration 

In this project it is of interest to explore how to port deep neural networks on FPGA devices. This is 

not something that we had prior knowledge of how to do, and thus this use case utilises the OmpSs 

in order to target the FPGA in the benchmarks. OmpSs drastically lowers the threshold for a first 

FPGA implementation and also decreases the time required to test new implementations/methods 

on FPGA. During the project, we had access to the Microserver Hardware Platform, but in the end, 

the experiments were conducted in-house for increased controllability, software support and 
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meaningful comparison with local hardware. The usage of the different parts in the toolchain is 

presented in Figure 30. 

 

Figure 30: Machine Learning Use Case Toolchain 

6.4 Experiments Setup 

In the benchmarks, we measure both inferences (frames) passed through the neural network per 

second (FPS) as our metric for execution time. During our benchmarks, each network works on a 

single frame at a time, effectively encapsulating latency in the same metric. Furthermore, we use 

inferences per joule to quantify the energy efficiency of a network. We also present the speedup 

factor and energy reduction factor between the unoptimised and optimised models. 

The inference speed benchmarks on Intel hardware were obtained using “OpenVINO” benchmark 

application in “sync” mode with “device” option set to “CPU” for Intel Core i9 and “Myriad” for 

INCS2. All of the CPU cores were running simultaneously. On NVIDIA Xavier (both with and without 

DLA) and NVIDIA Jetson TX2, speed data was extracted using “trtexec” tool from tensorrt. Both 

Raspberry PI and Zedboard were measured using time libraries for Python and C respectively. All of 

the speed benchmarks were obtained by averaging over 100 iterations. 

In energy efficiency benchmarks, power consumption and execution time of certain numbers of 

predictions were measured to calculate energy and subsequently the energy efficiency parameter 

Predictions/Joules. Time was obtained using the same tools that were used for speed benchmarks. 

As for power, each hardware platform needed a different technique for power measurements. 

However, we were able to extract the dynamic power from the total power consumption and the 

idle power on all of the platforms. Open Hardware Monitor software [34] was used in Intel Core i9, 

where power consumption was averaged over 100.000 inferences. In NVIDIA Xavier, the GPU was 
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in “15 W DESKTOP” mode and power consumption was read from GPU power rails via I2C [35]. As 

for NVIDIA Jetson TX2, the power mode was “MAXP ARM CORE” and the same technique as Xavier 

was used to get GPU’s power information. Raspberry PI’s input current was measured using a clamp 

meter and the input voltage was assumed to be constant at 5 V. Idle current was subtracted from 

the total input current in order to get the dynamic power. Finally, for ZedBoard, the current was 

measured over the current sense resistor of 10mΩ and the power was calculated assuming a 

constant voltage of 12V [36]. Both speed and energy efficiency were measured the same way for 

unoptimised as well as optimised neural networks. 

In total, we benchmarked three models on six different hardware platforms, i.e. we did 18 

benchmark experiments to evaluate the technology. The models we have used for our benchmarks 

are VGG16 [37] and ResNet18 [38] targeting the image classification dataset Cifar-10 [39] as well as 

YoloV3 [40]  used for object detection on the popular COCO-dataset [41]. These models are 

commonly used as the main component in image/video related applications either as a backbone 

or, in the case of YoloV3, as a complete end-to-end object detector. We consider accuracy drop of  

less than one percent as being negligible.  

6.5 Results 

The results from the optimisation done on the different models on several hardware platforms are 

presented in Figure 31 to Figure 36, comparing both speedup (measured in frames per second) and 

increased energy efficiency (measured in inferences per Joule). As observed in the results the 

optimisations done consistently increase the performance of models on a diverse set of hardware. 

The optimization results vary with the model and hardware platform. We could observe a minimum 

speed up of 1.5x and 2.3x increase in energy efficiency. Also, several model-hardware combinations 

show above 10x improvements.  

 

Figure 31: Execution time improvements comparing EmbeDL (blue) with baseline model (red) for VGG16 on six different 
hardware platforms 
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Figure 32: Execution time improvements comparing EmbeDL (blue) with baseline model (red) for Resnet18 on six 
different hardware platforms  

 

Figure 34: Energy efficiency improvements comparing EmbeDL (blue) with baseline model (red) for Resnet18 on six 
different hardware platforms 

Figure 33: Execution time improvements comparing EmbeDL (blue) with baseline model (red) for YOLOv3 on six 
different hardware platforms 
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Figure 35: Energy efficiency improvements comparing EmbeDL (blue) with baseline model (red) for VGG16 on six 
different hardware platforms 

 

Figure 36: Energy efficiency improvements comparing EmbeDL (blue) with baseline model (red) for YOLOv3 on six 
different hardware platforms.  

For increased readability, the relative improvements of both speed-up and energy efficiency are 

presented in Table 12 and Table 13. From these tables, the average improvement in speed-up is 4.3x 

and in energy efficiency is 6.3x.  

  



 

  D5.3 Version 1.1 46 / 81  

Speed-Up (X) ResNet18 VGG16 YoloV3 Average 

Intel Core i9 9900K 7.4 9.0 3.2 6.6 

NVIDIA Jetson TX2 4.6 4.2 2.8 3.9 

NVIDIA Xavier 3.7 2.6 6.1 4.1 

Xavier & DLA 2.2  1.9 2.1 

Intel NCS2 2.7 3.0 1.8 2.5 

Raspberry pi 3 b+ 6.6 11.0 1.5 6.4 

Zedboard 3.2 4.0  3.6 

Average 4.3 5.6 2.9 4.3 

Table 12: Summary of the speed-ups measured in the use case experiments, including average improvements for each 
hardware platform and model 

Energy (X) ResNet18 VGG16 YoloV3 Average 

Intel Core i9 9900K 5.4 8.0 6.1 6.5 

NVIDIA Jetson TX2 7.2 5.9 3.0 5.4 

NVIDIA Xavier 10.7 6.6 10.1 9.1 

Xavier & DLA 2.3  2.7 2.5 

Raspberry pi 3 b+ 10.3 11.4 4.3 8.7 

Zedboard 3.2 4.0  3.6 

Average 6.5 7.2 5.3 6.3 

Table 13: Summary of the energy efficiency improvements measured in the use case experiments, including average 
improvements for each hardware platform and model 

Both speedup and energy efficiency vary between hardware, which is expected since different 

hardware comes with its own set of memory- and compute constraints. Also, YoloV3 wasn’t 

evaluated on Zedboard due to hardware limitations and the unoptimized version of VGG16 did not 

run on Xavier & DLA possibly due to lack of memory but we still are not certain. We were also not 

able to measure the energy consumption of the Intel Neural Compute Stick. 

 

Figure 37: Optimization leads to reduced latency which improves a system’s real-time capabilities. This can be seen in 
the figure comparing optimized vs original YOLOv3 object detection model. Left:  Optimized by EmbeDL Deep Learning 
Optimization Engine. Right: Original model. Run on Nvidia Xavier using Nvidia TensorRT-7.1.3. 

Due to sequential execution, latency is improved with the same factor as speedup. In Figure 37 we 

can also qualitatively assess the importance of low latency for dynamic vision-based applications. 

The bounding boxes are drawn offset in the video with the corresponding latency. The optimized 

system is doing a much better job following a moving object.  
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7 Secure IoT Gateway 

The Internet of Things (IoT) is on everyone’s lips. There are completed products or instructions for 

do-it-yourself projects for nearly all interest groups. The growing number a diversity of IoT devices 

has already many effects on our lives as more and more of our devices are communicating among 

each other, no matter if we are a private or commercial user. Still, the security of IoT is often 

unattended for different reasons: it seems to be unnecessary for so small devices or too complex, to 

name just two often heard excuses.  

To provide a solution to reduce the complexity of IoT security, the Secure IoT Gateway was 

developed. See https://embedded.christmann.info/secure-iot-gateway/ for a customer-focused 

product description. 

Talking about Industry 4.0 and Internet of Things, the security of communication should be a main 

focus. Many devices are communicating among each other or to a central server/cloud. This could 

be in a local area network (LAN) like a company network as well as a wide area network (WAN) like 

the internet. No matter whether an IoT device is located in a local or wide area network, the 

communication through the network needs to be secure against any attacks. As any part of the 

communication can be attacked, an effective security concept is needed, covering the whole path 

between sender and receiver. The security of IoT and/or remote network devices is really complex, 

so the Secure IoT Gateway supports the Smart Home use cases by simplifying this complexity. The 

Secure IoT Gateway is a special use case in the LEGaTO project as its main goal is not to optimize 

the energy efficiency as the other ones but to reduce the complexity of IoT security and add another 

security layer to the use case. 

Figure 38 describes a typical basic network and compares the unsecured and secured setup, using 

the developed components of the Secure IoT Gateway which provides major security improvements 

by encrypting and controlling traffic flow from IoT devices. The system focuses on three main 

segments: Encryption, communication control and interconnectivity. The Secure IoT Gateway is 

centred on an easy-to-use web application, which allows the complete control over so called “IoT 

Bridges” and “IoT Gateways” – the hardware devices that ensure encrypted and controlled network 

traffic. Interconnectivity is achieved in the scope of cross-network communication, allowing IoT 

devices to communicate with each other even if they are in separate networks. VPN is the 

underlying technology for communication encryption and interconnectivity. Communication 

control is achieved with an in-house built version of the open-source Firewall OPNsense [42]. The 

different components and technologies that make up the Secure IoT Gateway are further described 

in section 7.1. 

 

Figure 38: Unsecured (left) versus secured (right) network scenario, using the Secure IoT Gateway components 

https://embedded.christmann.info/secure-iot-gateway/
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7.1 Components 

The Secure IoT Gateway is an application composed of four components working together to create 

a secure communication. 

 

Figure 39: Technologies, languages and frameworks that make up the Secure IoT Gateway 

As shown in Figure 39, VPN is the main underlying security technology besides Mutual Transport 

Layer (mTLS) for secured management communication. Instead of directly accessing the network, 

IoT devices are now forced to communicate over the newly established VPN connections between 

IoT Bridges – the VPN entry point for IoT devices – and the Local Gateway, which functions as the 

VPN endpoint supplier. The Secure IoT Gateway solution is split into two operating environments. 

One part is the local deployment where devices are placed at the customer’s site (IoT Bridges and 

Local Gateway). In order to manage these locally placed devices and their VPN connections, there 

is a counterpart in the datacenter, consisting of the Network Cockpit and Cluster Gateway. 

The purpose and functionality of the used frameworks as shown in Figure 39 is further described in 

section 7.1.4 - Underlying Technologies. 

Secure Communication through mTLS 

A secure and reliable remote configuration of the Secure IoT Gateway components is achieved 

through HTTPS requests. Those requests are sent through a VPN tunnel, thus protected and 

encrypted with two methods. In order to authenticate and validate the different devices at the 

Network Cockpit, mutual TLS connection (two-way authentication) is used. Mutual TLS behaves 

like a normal TLS authentication used in HTTPS, but instead of only validating the server side, 

mutual TLS also authenticates the client. When properly handshaked, the following traffic is 

encrypted and both identities are confirmed. To ensure a functional mutual TLS connection, client 

certificates are necessary which are created for every device during the provisioning process, further 

described in Figure 41. 
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7.1.1 IoT Bridge 

The IoT Bridge is a small local device running an embedded Linux system specialised for network 

activities, OpenWRT [43]. One IoT Bridge is placed directly before any IoT device that should be 

secured. The connection will be encrypted on-the-fly and can be established with a Gateway Cluster 

or a Network Gateway. As a component in a local area network, the IoT Bridge is not multi-customer 

capable. 

The main component of the Secure IoT Gateway is the IoT Bridge. It works as the network entry 

point for IoT devices and ensures a secured connection by encrypting traffic with OpenVPN. 

OpenWRT is an open-source, highly customizable, Linux based router firmware that runs on small 

embedded devices like the listed product line in Figure 40. These ARM-based embedded hardware 

components were chosen because they offer sufficient network throughput and encryption 

performance in a small form factor. To secure an IoT device, the bridge must be connected in-

between the local network and the IoT device itself. This ensures that the whole traffic that is sent 

and received by the IoT device is controlled and encrypted. In order to allow remote configuration 

of the IoT Bridge, we have extended the functionality of OpenWRT with several extensions written 

in the lightweight scripting language Lua [44]. Those extensions enable secure remote access to 

OpenWRT’s Unified Configuration Interface (UCI) and are included in the custom image of the IoT 

Bridge that is compiled, pre-configured and bundled from source within our continuous integration 

environment. 

 

Figure 40: IoT Bride hardware options 

The hardware options are tuned for different use-case scenarios. The most noticeable differences 

regarding the three hardware options is the encryption speed and the resulting network throughput. 

While the IoT Bridge 10 is mostly used for low-bandwidth applications like IoT sensors, IoT Bridge 

50 and 100 are more suitable for mid- and high-throughput IoT applications like video streaming or 

remote access use-cases. 

Provisioning 

All those programs and pre-configurations are not delivered with the hardware from the original 

manufacturer, but have to be put on the devices by us. To accelerate the provisioning process, a 

program was developed to automatically make all the steps needed for a delivery of a device to a 

customer which is described in Figure 41. 
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First, the device is flashed with a custom version of OpenWRT, containing our extensions, necessary 

Unix packages, custom time-series jobs, services and a base configuration. Now the custom 

provisioning software comes into play. 

 

Figure 41: Flowchart of the provisioning process 

The provisioning program requests an individual password and client certificate from the Network 

Cockpit API. The API is now creating a new SSL certificate, signed by a certificate authority located 

on the Network Cockpit server. At the same time, a new database record is created which contains 

the previously mentioned client certificate and password for the new IoT Bridge. The newly created 

password and certificate are now sent back to the provisioning program which passes it onto the IoT 

Bridge. MAC Address and Serial number (if provided) will be read from the system and sent to the 

Network Cockpit for later identification. Before completion, the API server address and 

configuration parameters for the OpenWrt extensions are set. The IoT Bridge is ready to be shipped 

to a customer. 

7.1.2 Local Gateway 

The Local Gateway is a local network component and therefore not multi-customer capable. The 

Network Gateway is a server with several Ethernet ports and runs an OPNsense instance. It allows 

OpenVPN secured connections to the IoT Bridges. All the communications between the 

components can be regulated by rules. 
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When it comes to deployment of IoT Bridges at a customer’s site, a Local Gateway is necessary to 

provide VPN endpoints for the IoT Bridges. Besides Local Gateways, the Cluster Gateway also plays 

an essential role in connecting multiple devices from different company locations. The Local 

Gateway itself has a VPN connection to the Cluster Gateway, allowing traffic routing to multiple 

customer sites. Both gateway types run on OPNsense – an open-source firewall operating system 

based on FreeBSD and in-build OpenVPN capabilities. To seamlessly integrate the Local Gateway 

and Cluster Gateway into the management, several OPNsense extensions were developed to 

enable remote configuration of firewall rules and OpenVPN servers / clients. Besides configuring 

rules and servers, these extensions are capable of sending system information and analytic data. 

7.1.3 Cluster Gateway 

The Cluster Gateway is a WAN component and will be hosted by a systems house and runs on an 

OPNsense instance. By doing this, the Cluster Gateway is the central component where other Local 

Gateways connect to. Therefore, the Cluster Gateway provides a secure network connection to the 

datacentre/server for the customer’s Local Gateways. To handle several customers, the Gateway 

Cluster is multi-customer capable. 

7.1.4 Network Cockpit 

The Network Cockpit is the central management interface that users (normally the administrator) 

will use to configure and monitor the IoT Bridges and Local Gateways. Normally, the user just sees 

and handles this part of the Secure IoT Gateway, which hides the configuration complexity of the 

underlying security processes and all different software and hardware parts. The Network Cockpit 

will be provided as a Cloud Service. 

As a web application, the Network Cockpit comes with access authorization. So just authorized 

users are allowed to use the Network Cockpit. The authorized users will be furthermore 

differentiated in several permission roles: 

1) Users: A User has access to the information and forms displayed in the network cockpit. 

The User only gains management permissions for specific devices, which can be assigned 

by the admin accounts. An account with this permission spectrum can be created and 

managed by a customer admin or the super admin and is intended for monitoring customer 

specific IoT bridges, IoT devices and VPN connections. The user could be any IT personnel 

or e.g. a head of department. 

2) Customer Admin: Customer Admins have full configuration control over the company’s 

devices such as IoT Bridges and Local Gateways. In addition, to configure the existing 

devices, the admin is allowed to create new accounts, new devices and Secure IoT Gateway 

components like IoT Bridges. Every new customer gets their own customer admin account 

– created by the super admin. Normally, this would be an IT administrator of the customers 

company. 

3) Admin: The Admin has all permissions like the Customer Admin: creation and management 

of users, devices and Secure IoT Gateway components. The Admin maintains the Gateway 

Network and is able to see all customers with their secured connection environments which 

are hosted by the systems house. This account is designed for technicians working in the 

systems house. 
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4) Super Admin: The Super Admin has complete control over the devices and customer 

accounts. Compared to the normal Admin, the Super Admin has full access to the user 

management system and is capable of creating and maintaining customer admin and 

admin accounts. Besides admin account creation, the Super Admin is also the only account 

allowed assigning newly provisioned IoT Bridges to customers. This account is also 

designed for technicians working in the systems house but more focused on device 

provisioning and their customer assignment rather than technical support. 

The Network Cockpit is built around some core features which are also reflected inside the main 

navigation menu. The “Dashboard” provides a good overview of all important activities and devices 

as well as some statistics. Monitoring and configuration of involved IoT Bridges and Local Gateways 

can be found under the “My Devices” menu item on the left side. Setting up communication rules 

for involved IoT devices is located under the menu item “Rules”. Additionally, you can find a “User 

Management” and a “Factory” page for internal provisioning use inside the main menu. 

After logging into the Network Cockpit, the user sees the Dashboard (see Figure 42) which consists 

of multiple widgets that can dynamically be arranged in different widget slots. 

  

Figure 42: Network Cockpit dashboard with a broad overview of the system 

These slots are prefilled with dashboard widgets, but the user has the option to configure the 

dashboard individually. The widget shop allows the user to select the widget of choice and insert it 

into the dashboard slot. Currently, the widget shop offers the following options: 

• Recent user activities 

• Recent network activities 

• Un-configured devices 

• Device status 

• Device logs 

• Device statistics 

Every Secure IoT Gateway component regularly sends monitoring data about the system it runs on. 

The Monitoring page presents this data as real-time information with CPU, RAM, bandwidth usage, 

system logs, connection status and some general information about the selected device. The 

information as seen in Figure 43 are specific for one selected device which can be found under the 

“My devices” menu, and then clicking on “Monitoring”. 
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Figure 43: Network Cockpit monitoring tab that shows device related statistics 

 “My Devices” also provides the “Overview” page, which is designed for a straight forward 

configuration of network components as seen in Figure 44. 

 

Figure 44: Network Cockpit device overview for configurations 

Upon double-clicking a network component, the sidebar opens and reveals the configuration 

options for the selected device. The first step of configuring new devices is always this page, because 

it allows the user to name IoT Bridges and connect it to a Local Gateway. Besides naming and 

connection management, this view also offers basic monitoring capabilities (uptime and status), a 

possibility to define the location of the IoT Bridge, adding a photo and general information like the 

current IP address. 
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When deployed and connected, an IoT Bridge has no communication rights per default. This ensures 

maximum security because all ports are blocked and no possible attack vectors are available inside 

the network. To allow certain services and connections, the user has to change the ruleset of specific 

devices in the “Rules” page as seen in Figure 45. 

 

Figure 45: Network Cockpit rule configuration for an IoT Bridge 

The Rule Configuration differentiates between IoT Bridges and protocols. By selecting „Another IoT 

Bridge“ as traffic destination, the IoT device behind the specified IoT Bridge is able to communicate 

with the target IoT Device. It is also possible to allow specific protocols and services like DHCP, DNS 

and HTTP / HTTPS to pass through by selecting the desired entry inside the „Traffic destination“ 

menu. 

The “Factory” page handles the customer assignment of freshly provisioned IoT Bridges. This page 

is only accessible to the systems house super-admin.  

In order to create new users, admins have access to the “User Management” page, which allows 

customers to create sub-user accounts. The super admin uses this page mainly for creating new 

customer-admin accounts. 

Underlying Technologies 

The Network Cockpit runs on a Linux System and multiple Docker Containers provide the basis and 

making the application available as a web application. The Network Cockpit is realized using HTML, 

CSS 3 und ECMAScript 6. Within the different languages, the following frameworks are used: 

• Nuxt.js (extended Vue.js frontend Framework) [45] 

• Bulma (Frontend Library used by Nuxt.js) [46] 

• CIM Elements (In-house built backend/frontend node packages from christmann) 

• Prisma (Database management based on PostgreSQL) [47] 

• Express.js (Node.js webserver) [48] 

• GraphQL Nexus (JavaScript GraphQL Schema Builder) [49] 

Nuxt.js is an open source web application framework, based on Vue.js. Nuxt.js makes the 

configuration and setup of web applications very simple. As it can build web applications using 
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server-rendering, it is more optimized for search engines. At the same time, the created web 

application acts like a Single Page Application with its interactivity so the user experience isn’t 

suffering caused by long loading times. 

Bulma is an open source CSS library that provides customizable and easy-to-use frontend elements 

that can be integrated via the nuxt.js framework. The library consists of multiple form elements, 

buttons, tables, navigation bars and other visual interface components. 

CIM Elements is a collection of in-house developed node.js packages, developed by christmann, 

that provide a variety of different features such as user management and authentication, 

permission management and also UI elements like tables and page layouts. 

Prisma is an open-source database toolkit. It works as an object-relational mapping and makes 

database access to PostgreSQL easy with an auto-generated query builder for Typescript & Node.js. 

Express is a minimal and flexible Node.js web application framework that provides a robust set of 

features for web and mobile applications. 

GraphQL Nexus is a framework which automatically generates GraphQL resolvers for CRUD-

operations for database datasets. GraphQL is an open-source data query and manipulation 

language for APIs, and a runtime for fulfilling queries with existing data. 

7.2 Integration in the Smart Home use-case 

The Secure IoT Gateway was integrated and tested in real-life usage in two different existing 

environments. First, we installed the system into the Bielefeld University network of the CITEC 

building with the goal of securing the publicly accessible Smart Mirror project, see section 3. This 

led to further development in the scope of a renewed hardware revision for the second integration 

in the KogniHome, a research flat for smart devices and assisted living in the Bielefeld city centre, 

see section 7.2.2. 

7.2.1 Smart Mirror prototype 

The initial test of the system in a real-world application was done in partnership with the Bielefeld 

University inside the CITEC building. The system was installed with the main focus of securing 

connections between the publicly accessible Smart Mirror prototype and the remote access client 

computers of the researchers. Some challenges had to overcome before we could start with the 

installation. The CITEC network required authentication via the IEEE 802.1X protocol, which was not 

supported by the IoT Bridges per default. The test revealed some missing possibilities in the remote 

configuration management of the IoT Bridges and one key feature – the Rule Configuration – was 

still in development and not ready for usage yet. Nevertheless, the system worked after some 

manual configuration. Later tests and benchmarks showed that the chosen hardware devices for 

the IoT Bridges were to slow to handle the remote desktop connections, so a new hardware 

selection became necessary. 

7.2.2 KogniHome research flat 

In the second integration, we installed the Secure IoT Gateway in the KogniHome research flat in 

the Bielefeld city centre. The KogniHome project aims to develop and showcase new smart home 
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technologies that allow technology-assisted living for all age generations and people with 

disabilities [50]. Multiple companies are part of the KogniHome project and contribute with their 

latest home assistant technology. In order to test and showcase the different technologies, a flat in 

Bielefeld was equipped with the latest smart home technologies, allowing a glimpse into the future 

of technology-assisted living standards. The four IoT devices KogniMirror, KogniChef, KogniWork 

and KogniHab were equipped with an IoT Bridge 50, therefore secured and controlled in their 

network communication. The IoT Bridge 50 is part of the new hardware revision and allows for 

higher VPN encryption speeds and better overall stability and performance. All traffic between the 

devices is now encrypted. Furthermore, access to unused network ports was denied by the rule 

configuration provided by the Network Cockpit.  

Besides IoT Bridges, we also installed a Local Gateway to provide VPN endpoints for the devices. To 

allow communication via MQTT (Protocol for IoT messaging [51]) and RSB (Robotics Service Bus – 

for scalable integration of robotic systems [52]), some manual configuration on the Local Gateway 

was necessary, because the Network Cockpit rule configuration currently does not support the 

selection of these protocols. Services like ICMP, DHCP, DNS and HTTP/HTTPS, on the other hand, 

can dynamically be configured by the Rule Configuration. 

In preparation of the integration, the new network topology and the integration points of the four 

IoT Bridges and the Local Gateway were discussed as seen in Figure 46. The developers and 

operators of the KogniHome were not able to change the IP addresses of the IoT devices that should 

be secured. Therefore, the development of a new feature was necessary to get working connections 

inside the existing KogniHome network structure without creating new subnets which would require 

new IP addresses. Rather than using a conventional OpenVPN routing setup, we decided to use a 

bridging configuration, making integration into the existing network structure possible. In contrast 

to the CITEC integration, this VPN network mode operates on layer 2 and does not create new 

subnets for the devices connected behind an IoT Bridge. The new feature was implemented into the 

Network Cockpit and allows customers to set their preferred network mode now. 

To allow a secure way of remote access, an IoT Bridge was configured to directly communicate with 

the Cluster Gateway, thus allowing encrypted network access over the internet. This is labelled 

“Private Home” in Figure 46. 
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Figure 46: KogniHome network with IoT Secure Gateway integration  

 

7.3 Benchmarks 

In D5.2 [2] the benchmark between OpenVPN and Wireguard was explained. Because of the better 

scaleability with parallel tunnels and the higher resulting overall VPN throughput the decision was 

made in favor of OpenVPN. Also the CPU utilization is higher with Wireguard. This could result in 

problems on the Local Gateway when a lot of VPN connections have to be served. 

PCIe crypto card vs CPU 

In addition to that benchmark, it was tested if a crypto accelerator could speed up the VPN 

connection. While Wireguard is not capable to use such an accelerator, OpenVPN can use it. The 

test should originally be done with the system used for the VPN connections which is OPNsense. 

Unfortunately, the Intel QAT driver that is used by the crypto card PE3ISLBEL from Silicom didn’t 

work with the FreeBSD used by OPNsense. And the current default hardware used by Christmann 

for the Local Gateway currently doesn’t support and boot with the crypto card. As an alternative, a 

test was done under CentOS 8 with OpenSSL to find out if the card would bring any advantage. The 

test was done with an AMD EPYC 7262 CPU running at 3,2 GHz which can be well used in large 

installations. The comparison system was the PE3ISLBEL crypto card and with an Intel Atom C2558 

CPU running at 2,40 GHz as it is used in the default Local Gateway. The benchmark was done with 

OpenSSL version 1.1.1c that was built to use the Intel QAT engine. The command “openssl speed” 

was used to utilize only the CPU and “openssl speed -engine qatengine” to use the crypto card 

during the benchmark. The following table shows the comparison of throughput with different 

block sizes for the aes-128-cbc-hmac-sha1 algorithm.  
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The results can be seen in Figure 47. They show that the crypto card brings a big advantage when a 

power efficient CPU like the Intel Atom is used. Still, a fast CPU like the tested AMD EPYC can 

outperform the crypto when using more than two processes. 

 

Figure 47: Comparison of aes-128-cbc-hmac-sha1 between AMD EPYC 7262, Intel Atom C2558 @2.40GHz and 
PE3ISLBEL crypto card with QAT driver 

Table 14 shows that the crypto card only accelerates key signing operations for private keys and 

some verification operations of public keys with the recent firmware. Some operations are not 

supported by the crypto card. This is the case where there is no difference between the crypto card 

and the CPU. But the QAT engine redirects those operations back to the CPU. 

                                process 
algorithm 

sign 
duration 

signed 
per second 

verify 
duration 

verified 
per second 

rsa  512 bits 154,2% 157,1% 15,4% 18,2% 

rsa 1024 bits 119,5% 118,9% 46,2% 46,6% 

rsa 2048 bits 419,0% 418,1% 48,6% 48,4% 

rsa 3072 bits 494,4% 494,6% 119,4% 118,9% 

rsa 4096 bits 628,8% 629,3% 123,1% 123,0% 

rsa 7680 bits 99,8% 99,6% 100,0% 100,0% 

rsa 15360 bits 100,0% 100,0% 100,0% 100,0% 

dsa  512 bits 75,3% 75,8% 100,0% 100,4% 

dsa 1024 bits 132,0% 131,8% 172,1% 171,3% 

dsa 2048 bits 439,0% 439,4% 98,7% 98,4% 

224 bits ecdsa (nistp224) 50,0% 34,5% 33,3% 53,6% 

256 bits ecdsa (nistp256) 0,0% 14,3% 33,3% 26,4% 
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384 bits ecdsa (nistp384) 500,0% 409,9% 140,0% 149,9% 

521 bits ecdsa (nistp521) 100,0% 85,5% 83,3% 92,4% 

253 bits EdDSA (Ed25519) 100,0% 99,8% 100,0% 101,3% 

456 bits EdDSA (Ed448) 100,0% 99,8% 100,0% 100,6% 

                             operation 
algorithm 

operations 
per second 

  
 

  
 

224 bits ecdh (nistp224) 70,5%   
 

256 bits ecdh (nistp256) 35,0%   
 

384 bits ecdh (nistp384) 456,5%   
 

521 bits ecdh (nistp521) 107,0%   
 

253 bits ecdh (X25519) 79,8%   
 

448 bits ecdh (X448) 568,6%   
 

Table 14: Comparison of OpenSSL test with AMD EPYC 7262 vs. PE3ISLBEL crypto accelerator card 

Concluding, it can be said that using the crypto card makes sense when many IoT Bridges are used 

on one Local Gateway. This will be further evaluated in future projects, also the integration of the 

QAT driver with OPNsense must be worked on. 

Comparison of different IoT Bridge devices 

Three different hardware device to be used as IoT Bridge were compared and benchmarked to find 

out the maximum encrypted VPN throughput. The tests were done using AES-128-CBC encrypted 

VPNs running iperf3. In the test, the different IoT Bridges were connected to a fast Local Gateway. 

Then, two computers were connected, one to the Local Gateway and one to the IoT Bridge to 

measure the throughput and the ends, as displayed in Figure 48. 

iperf3 server Local Gateway IoT Bridge iperf3 client

VPN

 

Figure 48: IoT Bridge benchmarking setup 

 

IoT Bridge 100 
iperf3 -c 192.168.2.200 -O 5 -P 3 -t 60 iperf3 -c 192.168.2.200 -O 5 -P 3 -t 60 -u -b 1G 

TCP UDP 

60 sec ▼ Transfer Bandwith Transfer Bandwith 

Sending 515 MBytes 72,0 Mbits/sec 777 MBytes 109,0 Mbits/sec 

Recieving 612 MBytes 85,6 Mbits/sec 708 MBytes 98,9 Mbits/sec 

     

IoT Bridge 50 
iperf3 -c 192.168.2.200 -O 5 -P 3 -t 60 iperf3 -c 192.168.2.200 -O 5 -P 3 -t 60 -u -b 1G 

TCP UDP 

60 sec ▼ Transfer Bandwith Transfer Bandwith 

Sending 307 MBytes 42,9 Mbits/sec 298 MBytes 41,7 Mbits/sec 

Recieving 361 MBytes 50,4 Mbits/sec 438 MBytes 61,2 Mbits/sec 
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IoT Bridge 10 
iperf3 -c 192.168.2.200 -O 5 -P 3 -t 60 iperf3 -c 192.168.2.200 -O 5 -P 3 -t 60 -u -b 4M 

TCP UDP 

60 sec ▼ Transfer Bandwith Transfer Bandwith 

Sending 84.9 MBytes 11,9 Mbits/sec 64.2 MBytes 9,0 Mbits/sec 

Recieving 67.0 MBytes 9,4 Mbits/sec 61.1 MBytes 8,5 Mbits/sec 

Table 15: Troughput of IoT Bridges tested with iperf3 

After benchmarking the IoT Bridges, the available hardware was devided in three products whose 

names indicate their VPN performance. 

Name VPN performance Typical power consumption 

IoT Bridge 10 9 Mbit/s 1,2 W 

IoT Bridge 50 55 Mbit/s 1,7 W 

IoT Bridge 100 95 Mbit/s 2,1 W 
Table 16: IoT Bridges VPN performance 

Ping, round trip time 

As some services like Voice-over-IP are sensitive to the ping, the Round-Trip Time was measured in 

the local network and to an external server. With an established VPN, the ping time increases only 

by about 1,9 ms. This allows to use time critical applications like remote services through the VPN 

of the IoT Bridges without the user noticing a significant delay. An Intel NUC with an Intel Celeron 

J4005 CPU running at 2,0 GHz and 4GB RAM was used behind an IoT Bridge 10 to test a Windows 

Remote Desktop (RDP) session. Several programs including the MS Office suite, an internet 

browser, and the Windows Explorer were tested. There was no noticeable difference between an 

unencrypted and VPN encrypted connection. The only noticeable difference could be observed 

when copying a large file into the RDP session. This took more time because of the limited 

throughput. A speed test in an RDP session running on the Intel NUC was done with the IoT Bridge 

10 as seen in Figure 49.  

 

Figure 49: Speed test within a browser over an RDP session through the IoT Bridge 10 

Editing Office documents as well as keyboard and mouse input, was very smooth. Video playback 

over RDP and VPN was not as smooth as without VPN protection. There were some visible artefacts 

in the video when playing a full HD YouTube video [53] over an RDP session using the IoT Bridge 10. 

With the IoT Bridge 50 and 100, these artefacts were not visible, and the video played very smoothly. 
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The results can be seen in Figure 50. The screenshots were taken on the local computer where the 

RDP session was displayed with exception of the original picture which was taken directly on the 

RDP host. 

 

Figure 50: Screenshot of a YouTube video run in 1080p; Left to right: Original, RDP without VPN, RDP with IoT Bridge 
10, RDP with IoT Bridge 50, RDP with IoT Bridge 100 

With the result of these benchmarks we have learned, that it can be useful to use an extra encryption 

card together with an energy-efficient CPU as the crypto card only uses 4,9W of power which is less 

than a powerful CPU would use. This would enable the usage of establishing many VPN tunnels on 

a cheap and energy-efficient platform. The performance of the cheap IoT Bridges 10 is sufficient to 

handle IoT services that don’t need much bandwidth with a low latency. Such a setup proved to 

serve as a VPN appliance, e.g. for office environments. If high throughput is expected, a suitable IoT 

Bridge with more maximum throughput can choose to satisfy those requirements. 
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8 Overall project integration  

In this project, we have integrated several software components in order to achieve a common 

programming environment around the hardware platforms. See https://legato-

project.eu/software/integration for the links to the software repositories. We have worked to 

include all integrations around the OmpSs programming model. This section shows the basic 

structure of each integration, and it uses the matrix multiplication [54] example to show how it is 

coded with the integrated version of the programming model. Overall, these are the integrations 

with OmpSs: 

• OmpSs and XiTAO targeting SMP tasking 

• OmpSs with support for CUDA and OpenCL kernels 

• OmpSs with support for Xilinx FPGAs with High-Level Synthesis and DFiant kernels 

• OmpSs with support for Maxeler DFEs (runtime-level only) 

• OmpSs with support for Secure SGX tasks (runtime-level only) 

Additionally, we have worked on the integration of other components around the OmpSs 

programming model and on the execution environment: 

• Linter tool for OmpSs 

• IDE plugin for OmpSs 

• RECS_Master and Slurm 

The following subsections explain these integrations with further details. 

8.1 OmpSs and XiTAO targeting SMP tasking 

For the OmpSs and XiTAO integration, we have adapted the two different execution environments 

so that the application can use both, and each environment has its own resources for task 

scheduling. Figure 50 shows the toolchain for this environment. The programmer decides which 

portions of the application should be written with OmpSs tasks or with XiTAO tasks. Once the code 

is split between the two models, upon starting the application, each runtime system owns its own 

resources, and schedules tasks on them. 

As an easy to understand application sample, we use a matrix multiplication, in such a way that half 

of the computation is done using OmpSs tasking, and the other half is implemented with XiTAO 

tasking. 

Figure 51 represents the integration of OmpSs with XiTAO in a graphical way, while the code listing 

in Figure 52 shows the matrix multiplication code example written using OmpSs and XiTAO. 

 

  

https://legato-project.eu/software/integration
https://legato-project.eu/software/integration
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Figure 51: Diagram representation of the integration of OmpSs with XiTAO, targeting SMP tasks 
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Figure 52: Sample matrix multiplication tasks when using OmpSs and XiTAO 

8.2 OmpSs with support for CUDA and OpenCL kernels 

OmpSs with support for CUDA and OpenCL kernels is able to leverage existing CUDA and OpenCL 

code without the need to write the CUDA and OpenCL boilerplate. It allows to run the applications 

on environments with Nvidia GPUs and OpenCL FPGAs. Figure 53 shows the toolchain for this 

environment. The Mercurium compiler is responsible of generating the code needed to provide the 

runtime with the necessary data copies, and the wrapper code needed to invoke the CUDA kernels. 

This wrapper code is later compiled with the Nvidia GPU NVCC compiler [55]. 

// Create the XiTAO graph 
MatVecTAO* vm = new MatVecTAO(A_xitao, B, C_xitao, xitao_work_size, N, width); 
MatVecCompute(vm, A_omp, B, C_omp, openmp_work_size, N); 
 
… 
 
void   MatVecCompute(void * vm, …,  int N) 
{ 
#pragma oss task        // OmpSs task to create the parallelism around the OmpSs matmul 
{ 
#pragma oss task for shared(A_omp, C_omp, B, openmp_work_size, N) 
  for(size_t i = 0; i < openmp_work_size; ++i) { 
    for(size_t k = 0; k < N; ++k) { 
      for(size_t j = 0; j < N; ++j) { 
        C_omp[i * N + j] += A_omp[i * N + k] * B[k * N + j]; 
      } 
    } 
  } 
#pragma oss taskwait     // end of the OmpSs work 
} 
… 
  // push the TAO   Starting point of the XiTAO tasking 
  GOTAO_push(vm); 
  //Start the TAODAG execution 
  GOTAO_start(); 
 
#pragma oss taskwait 
} 
 
 
// TAO definition with the XiTAO matmul implementation 
class MatVecTAO : public AssemblyTask 
{ 
public: 
 … 
 
// Inherited pure virtual function that is called by the runtime  
// upon executing the TAO. 
  /*! 
    \param threadid logical thread id that executes the TAO 
    This assembly can work totally asynchronously 
  */ 
  void execute(int threadid) 
  { 
   //  int tid = threadid - leader; 
    size_t li = i++; 
    while(li < nrows){ 
      for (size_t j = 0; j < N; ++j) { 
        for(size_t k = 0; k < N; ++k) { 
          C[li*N + j] += A[li*N + k] * B[k*N + j]; 
        } 
      } 
      li = i++; 
    } 
  } 
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Figure 53: Diagram representation for the integration of OmpSs with CUDA and OpenCL kernels 

 

Figure 54: Matrix multiplication with OmpSs support for CUDA and OpenCL kernels 

The code listing in Figure 54 shows the use of the “implements” approach to express that the same 

functionality is available in several versions for the different devices, and allows the runtime system 

to decide which one is used at every task invocation. 

 

 

 

// Matrix multiplication with OmpSs support for CUDA and OpenCL kernels 
 
#pragma omp target device(smp) copy_deps 
#pragma omp task in([bsize*bsize]A, [bsize*bsize]B) inout([bsize*bsize]C) 
void matrixMult(REAL  *C, REAL *A, REAL * B, int wa, int bsize) 
{ 
      cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, bsize, bsize, bsize, 
                  1.0f, A, bsize, B, bsize, 1.0f, C, bsize); 
} 
 
// CUDA kernel task description 
#pragma omp target device(cuda) ndrange(2,NB,NB,BL_SIZE,BL_SIZE) copy_deps      
implements(matrixMult) 
#pragma omp task inout([NB*NB]C) in([NB*NB]A,[NB*NB]B) 
__global__ void matrixMult_cuda(REAL* C, REAL* A,  REAL * B, int wA, int wB); 
 
// OpenCL kernel task description 
#pragma omp target device(opencl) ndrange(2,NB,NB,BL_SIZE,BL_SIZE) copy_deps  
        implements(matrixMult) 
#pragma omp task inout([NB*NB]C) in([NB*NB]A,[NB*NB]B) 
__kernel void matrixMult_opencl(__global REAL* C,__global REAL* A, __global REAL* B,int wA, int 
wB); 
 
void matmul(...) 
{ 
... // Invokes block matmul and the runtime system decides which device to use for execution 
       matrixMult((tileC[i*nDIM+j], tileA[i*lDIM+k], tileB[k*nDIM+j],NB,NB); 
} 
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8.3 OmpSs with support for Xilinx FPGAs and DFiant kernels 

When High-Level Synthesis (HLS) is available for the target FPGA environment, as it is the case for 

Xilinx FPGAs, OmpSs is enabled to outline the tasks annotated as targeting the FPGA device, as 

C/C++ kernels that are later compiled with the HLS vendor tools (Vivado HLS for Xilinx devices). 

Additionally, this environment supports also to incorporate kernels written with DFiant. Figure 55 

shows the toolchain for this environment. 

 

 

Figure 55: Diagram representation for the integration of OmpSs with CUDA and OpenCL kernels 

 

Figure 55 shows a matrix multiplication benchmark with support for SMP and HLS tasks. It also uses 

the “implements” keyword to indicate to the runtime system that it can use any of the two functions 

to run the task functionality at any given time, provided that there are available resources. 

Additionally for HLS tasks, the programming model allows to express the amount of IP cores that 

should be generated by the compilation stage. This way, the infrastructure is already prepared to 

run a number of tasks in parallel on the same FPGA device (3 instances in the example). 

We also provide the possibility to substitute the IP cores generated from HLS, by the kernels 

generated from DFiant, which are managed in the same way, integrated on the Vivado project and 

invoked by OmpSs at the call points. 
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Figure 56: Matrix multiplication with OmpSs support for HLS kernels 

  

// Matrix multiplication with OmpSs support for CUDA and OpenCL kernels 
 
#pragma omp target device(smp) copy_deps 
#pragma omp task in([bsize*bsize]A, [bsize*bsize]B) inout([bsize*bsize]C) 
void matrixMult(REAL  *C, REAL *A, REAL * B) 
{ 
      cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, bsize, bsize, bsize, 
                  1.0f, A, bsize, B, bsize, 1.0f, C, bsize); 
} 
 
// HLS kernel task description 
#pragma omp target device(fpga) copy_deps  implements(matrixMult)  num_instances(3) 
#pragma omp task in([bsize*bsize]a, [bsize*bsize]b) inout([bsize*bsize]c) 
void matrixMult_hls(REAL *c, REAL *a, REAL *b) 
{ 
   #pragma HLS INLINE // off 
   #pragma HLS array_partition variable=a cyclic factor=4 
   #pragma HLS array_partition variable=b cyclic factor=BSIZE/4 
   #pragma HLS array_partition variable=c cyclic factor=BSIZE/2 
 
   for (int k = 0; k < bsize; ++k) { 
      for (int i = 0; i < bsize; ++i) { 
         #pragma HLS pipeline II=MBLOCK_II 
         for (int j = 0; j < bsize; ++j) { 
            c[i*bsize + j] += a[i*bsize + k] * b[k*bsize + j]; 
         } 
      } 
   } 
} 
 
void matmul(...) 
{ 
...      // Invokes block matmul and the runtime system decides which device to use for its 
execution 
       matrixMult((tileC[i*nDIM+j], tileA[i*lDIM+k], tileB[k*nDIM+j],NB,NB); 
} 
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8.4 OmpSs with support for Maxeler DFEs 

Figure 57 shows the integration of OmpSs with Maxeler kernels. In this approach, we have done the 

development at the runtime system level, allowing the programmer to use the OmpSs runtime 

interface to create tasks invoking the Maxeler kernels. The kernels are written in MAXJ, and 

compiled with the MAXJ Compiler. The resulting binary kernel file is loaded by the OmpSs runtime 

onto the Maxeler DFE using the SLiC interface provided by Maxeler. 

The code listing in Figure 58 shows the outline of the code provided by the programmer to create, 

initialize and submit a blocked matrix multiplication task into the Maxeler DFE. 

 

 

Figure 57: Diagram representation for the integration of OmpSs with Maxeler kernels 
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Figure 58: Matrix multiplication with OmpSs support for Maxeler kernels 

  

// Matrix multiplication with OmpSs support for Maxeler kernels 
 
// Task creation following the target device interface of OmpSs 
void matmulPanelWrapper(double *a, double *b, double *c, int panelSize) 
{ 
 ... 
   max_ol_matmulPanel_1_args.outline  

= (void (*)(void *))(void (*)(struct nanos_args_0_t 
*))&max_ol_matmulPanel_1; 

   max_ol_matmulPanel_1_args.type = 1723338717; 
 
   ... 
 
   nanos_create_wd_compact(&nanos_wd_, &nanos_wd_const_data.base, &nanos_wd_dyn_props,  
                sizeof(struct nanos_args_0_t),  (void **)&ol_args, ...); 
   ... 
   nanos_set_translate_function(nanos_wd_,  

(nanos_translate_args_t)nanos_xlate_fun_mmtestpanelsc_0); 
 
   ... 
   nanos_submit(nanos_wd_, 3, &dependences[0], (nanos_team_t)0); 
  ... 
} 
 
// Unpack the arguments of the task and perform the connections with the Maxeler kernel 
void max_ol_matmulPanel_1_unpacked(double *a, double *b, double *c, int panelSize) 
{ 
    nanos_max_queue_input("A", a, panelSize*sizeof(double)); 
    nanos_max_queue_input("B", b, panelSize*sizeof(double)); 
    nanos_max_queue_output("C", c, panelSize*sizeof(double)); 
} 
 
static void max_ol_matmulPanel_1(struct nanos_args_0_t *const args) 
{ 
  { 
    max_ol_matmulPanel_1_unpacked((*args).a, (*args).b, (*args).c, (*args).panelSize); 
  } 
} 
 
void __mcxx_max_register_gemm(void *p) { 
    nanos_max_register_dfe( (void*)gemm_init, "TM", 1723338717); 
} 
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8.5 OmpSs with support for Secure SGX tasks 

Figure 59 shows the integration of the secure SGX tasks with the OmpSs runtime. In this case, the 

programmer inserts the tasks code inside an enclave, and defines its interface using the Intel Trusted 

Library enclave definition language [56]. From the application side, tasks invoke the sgx_ecall 

service, passing the task parameters, and letting the Intel enclave runtime to invoke the task.  

The code listing in Figure 60 shows an outline of the task code doing the offloading with OmpSs and 

invoking the Intel enclave services. 

 

 

Figure 59: Diagram representation for the integration of OmpSs with secure SGX tasks 
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Figure 60: Matrix multiplication with OmpSs support for secure SGX tasks 

  

// Matrix multiplication with OmpSs support for secure SGX tasks 
 
// Task entry point definition to the Enclave (Enclave/TrustedLibrary/Thread.edl) 
        public void ecall_matmul_u([user_check] double* a, 
                                   [user_check] double* b, 
                                   [user_check] double* c, int NB); 
 
// Task invocations from the user application using regular OmpSs directives 
int SGX_CDECL main(int argc, char *argv[]) 
{ 
 
... 
 
 for (i = 0; i < DIM; i++) { 
  for (j = 0; j < DIM; j++) { 
    for (k = 0; k < DIM; k++) { 
     #pragma omp task in(A[BSIZE][BSIZE], B[BSIZE][BSIZE]) inout(C[BSIZE][BSIZE]) no_copy_deps 
       { 
        ecall_matmul_u(global_eid, &A[i][k], &B[k][j], &C[i][j], BSIZE); 
       } 
      } 
     } 
   } 
 #pragma omp taskwait 
} 
 
// Enclave invocation 
sgx_status_t ecall_matmul_u(sgx_enclave_id_t eid, double* a, double* b, double* c, int NB) 
{ 
        sgx_status_t status; 
        ms_ecall_matmul_u_t ms; 
        ms.ms_a = a; 
        ms.ms_b = b; 
        ms.ms_c = c; 
        ms.ms_NB = NB; 
        status = sgx_ecall(eid, 32, &ocall_table_Enclave, &ms); 
        return status; 
} 
 
// task implementation inside the Enclave 
void ecall_matmul_u(double* a, 
                    double* b, 
                    double* c, int NB) 
{ 
  decrypt(a, NB); 
  decrypt(b, NB); 
  int i, j, k, I; 
  double tmp; 
  for (i = 0; i < NB; i++) 
  { 
    I=i*NB; 
    for (j = 0; j < NB; j++) 
    { 
      tmp=c[I+j]; 
      for (k = 0; k < NB; k++) 
      { 
        tmp+=a[I+k]*b[k*NB+j]; 
      } 
      c[I+j]=tmp; 
    } 
  } 
  encrypt(c, NB); 
} 
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8.6 Linter tool for OmpSs 

Figure 61 shows the interactions between an OmpSs running application and the Linter tool. When 

the application creates and manages tasks, those and their data dependence information are 

communicated to the Linter tool. The Linter has also access to the information expressed on the 

directives regarding data hints, and to the debugging information generated by the compiler. In this 

way, the Linter tool is able to detect data races, and missing directive hints, and report them to the 

user. The development of the Linter tool has been shown in Deliverable 3.3 [57]. 

 

Figure 61: OmpSs Application and Linter tool execution diagram 

8.7 IDE plugin for OmpSs 

Figure 62 shows an Eclipse Che workspace with the support for the OmpSs@FPGA compilation 

environment. It allows to manage projects for FPGA acceleration and build the binary for the host 

and the bitstream for the FPGA automatically.  

We have also developed the Eclipse plugins that provide hints for the programmer for OmpSs and 

OpenMP. Figure 63 shows the IDE plugin displaying information about the possibilities available at 

the writing point for task clauses, and among them the data-directionality hints (in, inout), and an 

explanation of their meaning. The development of the Eclipse plugin is presented in Deliverable 4.4 

[58]. 
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Figure 62: Screenshot of an Eclipse Che workspace with the compilation of the dot-product sample 

 

 

Figure 63: Eclipse plugin showing the hints offered to the programmer about task data-directionality hints 

8.8 RECS Master and Slurm 

The Slurm Workload Manager [14] has been integrated with the RECS_Master node management 

service. With this integration, users can allocate nodes in the cluster by using Slurm scripts. Figure 

64 shows the batch job script description that the user submits to the queueing system. In this case, 

the constraint used is that the nodes should be of the ARM architecture, with big.LITTLE cores, and 

a GPU. Slurm allocates the nodes, and the job is submitted to them for execution. 
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Figure 64: Integration of Slurm with the RECS Master management environment 

 

 

Figure 65: Display of nodes allocated using the Slurm integration on the Web-GUI of RECS_Master 

Figure 65 shows the display of the user interface of RECS_Master, indicating that the 10 nodes 

are up and running while the job is running. Upon completion, Slurm will put the nodes back in 

the off state. The Slurm and RECS_Master integration is shown in Deliverable 3.4 [59]. 
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9 Conclusion 

This document presents the final implemented and optimised use cases, as well as benchmarks 

comparing the original with the optimised versions. 

We were able to show (partially enormous) improvements in all targeted disciplines: energy 

efficiency, MTBF, code base security, designer productivity, TCO/costs and latency – as detailed in 

the introduction. Four of five use cases were improved with a focus on total speedup and energy 

efficiency, making use of the various LEGaTO technologies, reaching up to the impressive factor of 

2503.6x speedup in the Heath Care use case.  

Metric Target Achieved 

Energy 
Efficiency 

10x increase Smart Home: 12x, c.f. Chapter 3.4 
Smart City: 35x - 95x, c.f. Chapter 4.4 
Infection Research: 8.35x - 7708.8x, c.f. Chapter 5.3 
Machine Learning: 11.4x, c.f. Chapter 6.5 

MTBF, 
application 
reliability 

5x increase Smart City: 15.23x, c.f. Chapter 4.6 

Code Base 
Security 

10x increase Infection Research: 7.7x, c.f. Chapter 5.3 

Designer 
Productivity 

5x increase DFiant: 50% - 70% less lines of code,  
c.f. D4.4 Chapter 4.1.1.5 
MaxJ: 4x improvement of productivity [60], also  
c.f. D4.4 Chapter 3.1 
Additional improvements are expected through the usage of 
OmpSs and the developed Eclipse IDE 

TCO & Costs n/a Smart Home: 81.6% TCO improvement,  
c.f. D5.4 Chapter 4 
Smart City: 70% TCO improvement,  
c.f. D5.4 Chapter 5 
Infection Research: 91.8% - 98.8% TCO improvement,  
c.f. D5.4 Chapter 6 
Machine Learning: 43.8% TCO improvement,  
c.f. D5.4 Chapter 7 
Secure IoT Gateway: 40% TCO improvement,  
c.f. D5.4 Chapter 8 

Latency n/a Machine Learning: 11x, c.f. Chapter 6.5 

Table 17: Overview of evaluated and optimised metrics 

The Smart Home use case was able to achieve the goal of running on the very efficient LEGaTO-

developed edge server prototype, increasing the energy efficiency by 12x. The Smart City use case 

showed an energy efficiency increase of 95x running on an Nvidia Xavier microserver at the cost of 

an 11x slowdown, compared to a BSC Marenostrum4 node. The Infection Research use case was 

able to massively speed-up not only one, but four different application parts, resulting in a speed-

up of 10x, 40x, 544x and the mentioned 2503.6x. This opens up a whole new world of statistical 

analytics that was impossible to do before. The Machine Learning use case developed the new deep 

learning optimisation tool EmbeDL, showing an average speed-up of 4.3x and energy efficiency 
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increase of 6.3x. The Secure IoT Gateway was developed, easing the usage of IoT security through 

a web interface and deployment processes, and successfully integrated into two locations of the 

Smart Home use case. 

The usage of the diverse LEGaTO tools was eased as OmpSs was chosen as the main programming 

model for most use cases. Therefore, OmpSs was extended to make use of additional compilers and 

runtimes as described in Chapter 8, so the use cases didn’t have to implement all of them in a 

different way.  

All these developments and optimisations prove that LEGaTO was very successful in the overall 

project integration, bringing the developed hardware, middleware and whole optimisation 

toolchains to life and use them in completely different use cases. As some of the use cases are 

research-oriented, this will not only open up new research fields but also encourage similar research 

in the area of energy efficiency in Europe to use matured software stacks like OmpSs. Other use 

cases open up new fields of engagement and research because of disruptive improvements like the 

Infection Research use case.  

Further fields of development and research have partially been discussed in the individual sections, 

but are summarised here. The Smart Home use case could stabilize and mature the actual 

developments, design an attractive overall smart mirror product and sell the solution – besides 

further research in human interaction and smart living. The Smart City needs to further research on 

the scaling of the very efficient implementation as the total performance is hardly comparable to 

today’s classical solution. The Infection Research use case wants to further research on the 

developed and optimised application parts, publish the research, but also bundle the application 

parts for easy usage for external people. This would open up a new world of statistical biomarker 

analysis for the whole medical community. The Machine Learning use case has a clear plan on how 

to continue the development in the EU funded follow up project VEDLIoT, and in parallel is 

marketing the solution via the spin-off EmbeDL. The development of the Secure IoT Gateway will 

also be continued in the VEDLIoT project, adding new features like WiFi and LoRa support and 

increasing the TRL level from 6 to 7, targeting a market launch within the next two years. 
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